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SOURCES OF VARIATION IN THE FORAGING BEHAVIOR 

AND DEMOGRAPHY OF THE SEA OTTER, ENHYDRA LUTRIS 

Martin Tim Tinker 

Abstract 

 I investigated demography and foraging behavior of the southern sea otter (Enyhdra 

lutris nereis), in order to examine the individual and population-level consequences of 

alternative foraging strategies, and to evaluate the importance of food-limitation as a factor 

limiting population growth.  I developed a maximum likelihood-based analytical method to 

estimate historical age/sex-specific vital rates, and spatial/temporal variation in vital rates, 

using carcass age-structure and population census databases.  To estimate current 

demographic trends I conducted a mark-recapture study, measuring survival and 

reproduction of 115 radio-tagged study animals between 2001 and 2004.  Together, these 

analyses indicate that survival has decreased substantially between the early 1990s and the 

present, and is lowest in the north-central portion of the sea otter’s range.  The greatest 

decrease was for adult (> 4 years of age) females: variation in survival of this age/sex class is 

primarily responsible for regulating population growth and driving population trends.   

I also collected foraging data from 60 marked sea otters, and found pronounced 

individual dietary specialization (greater than that reported previously).  Cluster analysis 

indicated that individual diets could be grouped into three general “diet types”; differences in 

foraging behavior between these diet types suggest that they represent distinct foraging 

strategies.  The rate of energy gain while foraging was low for the population as a whole, but 

showed a high degree of variation.  Foraging strategies differed with respect to mean energy 

gain; however, because the mean and within-animal variation in rate of energy gain were 



 

positively correlated, all three strategies result in similar probabilities of exceeding a critical 

rate of energy gain on any given day, and there is likely a trade-off between the mean and 

variance in the rate of energy gain.  Correlational selection is also important in maintaining 

multiple foraging strategies within the population: a multivariate fitness surface fit to 

foraging behavior indicates multiple fitness peaks corresponding to alternative foraging 

strategies.  I suggest that food-limitation is likely an important ultimate factor restricting 

population growth in the center of the sea otters’ range in California, but that the existence of 

alternative foraging strategies may obscure expected patterns of density dependence. 
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Introduction 

The southern sea otter (Enhydra lutris nereis) narrowly escaped extinction at the 

beginning of the 20th century, primarily as a result of the international fur trade (Kenyon 

1969).  After receiving protection from hunting pressure, however, the population recovered 

from a tiny remnant colony of approximately 100 animals in 1938 (located along the Big Sur 

coastline near Bixby creek) to a population of over 2500 individuals by 1994, ranging 

between Half Moon Bay in the north to Pt. Conception in the south (Kenyon 1969, Estes et 

al. 2003a).  Throughout this period the rate of recovery was sluggish compared to other 

recovering or translocated populations (Estes 1990), and the population remains listed as 

threatened under the Endangered Species Act (USFWS 2003).  Between 1994 to 1999 the 

population actually underwent a significant decline (Estes et al. 2003a); although population 

recovery now appears to have resumed (based on more recent range-wide population counts: 

USGS, unpublished data), the cause(s) of the 1990’s decline remain uncertain, as does the 

relative importance of prey abundance as a factor potentially limiting future population 

growth in portions of the range.   

The relative abundance of prey resources has been found to be the factor ultimately 

limiting population growth in sea otter populations in Alaska and Russia (Garshelis et al. 

1986, Estes 1990, Estes et al. 1996, Bodkin et al. 2000).  For these northern populations, as 

with many other apex predators, it appears that carrying capacity is reached when the 

abundance of one or more important prey populations (e.g. green sea urchins, 

Strongylocentrotus droebachiensis) becomes sufficiently reduced by predation pressure 

(Estes and Duggins 1995).  Because predation pressure increases as a function of sea otter 

density, individual foraging success therefore tends to be negatively density-dependant 
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(Estes et al. 1981, Estes et al. 1982, Dean et al. 2002).  Although these patterns appear to be 

relatively consistent across most northern populations, the situation is somewhat less clear 

for the southern sea otter.  There is strong evidence that the periods of population decline in 

California are associated with increased mortality rather than decreased reproduction (Estes 

et al. 2003a), and much attention has been focused on the role of infectious diseases as a 

primary source of this mortality (e.g. Thomas and Cole 1996, Miller et al. 2002, Kreuder et 

al. 2003).  Evidence for the importance of infectious disease derives from detailed 

examination of fresh beach-cast carcasses, which are collected throughout the sea otters 

range in California as part of a long-term and comprehensive inter-agency salvage program 

(Ames et al. 1983, Estes et al. 2003a).  In addition to infectious disease, analysis of the 

carcass database indicates myriad other sources of mortality in the southern sea otter, 

including direct human-caused mortality (e.g. boat strikes, shooting), shark bite, 

entanglement in fishing gear, naturally-occurring or anthropogenic toxins, mating trauma (or 

other injuries inflicted by con-specifics), and emaciation (Estes et al. 2003a).   

Since 1992 there have been relatively few fresh carcasses for which emaciation has 

been determined to be the primary cause of death (Kreuder et al. 2003), and in view of this 

fact there has been little consideration of density-dependant food limitation as a factor 

limiting recovery of the southern sea otter.  However, there are a number of reasons why 

food limitation should not be dismissed as an important factor in this population.  First, the 

fact that prey resources are the chief determinants of carrying capacity in other sea otter 

populations is by itself sufficient reason to include food limitation as one of several potential 

hypotheses about the sources of population regulation in the southern sea otter.  Second, it is 

overly simplistic to expect that food limitation would be evident solely as an increase in the 
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number of otters dieing from starvation: in fact, one of the chief manifestations of energetic 

or nutritional stress is an increase in disease, resulting from compromised immune function 

(Cunningham-Rundles 2002).  Thus a high level of disease-related mortality is not by itself 

inconsistent with a hypothesis of food limitation as an ultimate causal factor, because food-

stress could be underlying other proximate causes of death.  Third, the precise demographic 

impacts of food limitation in the southern sea otter are difficult to predict due to the varied 

diet (Ostfeld 1982) and high degree of individual dietary specialization (Estes et al. 2003b).  

Estes et al. (2003b) showed that individual otters inhabiting the same geographic locations 

may have almost non-overlapping diets, which means that any nutritional deficiencies 

caused by reductions of particular prey populations would likely impact certain individuals 

but not others, resulting in complex and variable effects of food limitation on demography.  

Detecting food limitation in the southern sea otter may therefore be less straightforward than 

in Alaskan populations: a first step in resolving this issue will be to clarify the specific 

patterns of demographic change that are responsible for the observed fluctuations in 

population growth. 

Sea otters have an extraordinarily high mass-specific metabolic rate (Costa 1978), 

primarily as a consequence of high thermoregulatory demands created by their small size 

(and thus high surface-to-volume ratio as compared to most other marine mammals) and lack 

of blubber insulation (Costa and Kooyman 1982).  The high energetic requirements of sea 

otters, in conjunction with their inability to store significant quantities of energy as fat 

reserves and the fact that individual foraging success is density-dependant, would lead us to 

expect that foraging behavior and diet selection must be under particularly intense selection 

pressure in this species.  This feature, in conjunction with their tractability as a study animal 
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(they handle and consume all prey at the surface and usually within sight of the shore where 

they can be readily observed) makes them an ideal candidate for studies of foraging 

behavior.   

Sea otters are particularly suitable for testing optimality models, which often assume 

that energy-maximizing decisions are equivalent to fitness-maximizing decisions (Stephens 

and Krebs 1986); in sea otters this assumption may actually be warranted because their 

survival and reproductive success depends on maintaining a high rate of energy input 

(Monson et al. 2000).  Given this fact, it is therefore somewhat surprising that different 

individuals have such unique diets (Estes et al. 2003b), each of which likely has different 

energetic consequences (Mathews 1996).  One might instead expect selection to push 

foraging behavior towards a single “optimal” strategy.  Estes et al. (2003b) speculated that 

individuals probably specialize because the foraging skills required for different prey types 

are highly divergent and difficult to learn, and thus specialists have greater foraging 

efficiency than generalists: this, in conjunction with cultural transmission of foraging skills 

from mothers to pups and frequency-dependent dynamics, could act to maintain alternative 

specializations in the population.  This phenomenon certainly requires further investigation, 

both in terms of better understanding the mechanisms that maintain alternative 

specializations and in terms of resolving the implications for individual fitness (and, 

ultimately, for demography and population dynamics). 

The research that is summarized in the following chapters was designed to address 

three broad objectives, which may seem at first glance to be somewhat disparate but are in 

fact highly interrelated.  First, I set out to describe spatial/temporal variation in the 

demography of the southern sea otter, and in particular to determine the specific changes that 
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were responsible for population decline during 1990s.  This first objective was achieved by 

analyzing a variety of historical data sources, and combining the results with a mark-

recapture analysis of data collected from an ongoing, telemetry-based study of the current 

population: this work is presented in chapter 1.  Second, I wished to study in more depth the 

patterns of variation in diet and foraging behavior in this population, to determine a) whether 

individual dietary specialization corresponds to readily distinguishable foraging strategies, 

and b) the implications of alternative foraging strategies for individual fitness, for foraging 

success in general, and ultimately for population dynamics.  To achieve this objective I 

studied foraging behavior in a sample of marked study animals at two study sites over a 

three year period: the results of this work are presented in chapter 2.  Finally, I sought to 

better understand the mechanisms that lead to coexistence of alternative specializations in 

this population, or indeed any population, and in particular to examine the potential roles of 

learned foraging skills and cultural transmission.  To achieve this last objective using 

empirical data collected from sea otters turned out to be beyond the scope of a single 

graduate career; however, as a first step in attacking this problem I developed a series of 

dynamic, quantitative models that together explore the interactive effects of learning 

behavior, cultural transmission and frequency-dependent foraging success on the prevalence 

of alternative foraging specializations in a population.  These models are presented in 

chapter 3.   
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Chapter 1. Spatial and temporal variation  

in the demography of southern sea otters 

Introduction 

Spatial and temporal variation in population abundance is a universal characteristic 

of all wildlife species, and understanding the causes of such variation is a fundamental goal 

of population biologists (Caughley 1977).  Unfortunately, while it is often straightforward to 

detect trends in population abundance, determining the cause of observed trends is generally 

much more difficult.  Populations vary in abundance due to changes in the vital rates of 

individual animals (birth, death, immigration and emigration), which are shaped by an 

almost infinite array of biotic and abiotic factors.  Nonetheless, determining the patterns and 

sources of variation in demographic rates is a necessary step in the assessment of population 

viability (Doak and Morris 2002), and analytical models that incorporate demographic 

variation have been important tools in the conservation of threatened populations such as the 

Yellowstone grizzly bear (Eberhardt et al. 1994, Doak 1995, Pease and Mattson 1999) and 

the northern spotted owl (Lande 1991, Forsman 1993). 

Unfortunately, for many endangered or threatened species there are few (or no) 

reliable estimates of demographic rates.  Direct estimates are difficult and costly to acquire, 

requiring longitudinal records from marked individuals: such records are generally obtained 

using tagging, band recovery or biotelemetry methods, collectively referred to as “mark-

recapture” data (White 1983, Pollock et al. 1990).  In the case of large vertebrate species 

with broad geographic ranges and long life spans it is particularly difficult to obtain mark-

recapture data over long enough time periods and over sufficiently large areas to form a 
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representative picture of the key demographic drivers of population dynamics.  In the few 

cases where demographic data have been collected over appropriate spatial and temporal 

scales for large vertebrates, the resulting data sets have provided powerful tools for 

projecting future population dynamics and/or identifying key life history stages for focusing 

management efforts (e.g. Crouse et al. 1987, Eberhardt et al. 1994, Crooks et al. 1998, 

Coulson et al. 1999, Milner-Gulland et al. 2000, Schaefer et al. 2001).  However, for most 

large species it is either unfeasible to initiate large scale mark-recapture programs, or else 

mark-recapture programs were not in place when important population dynamics were 

occurring.  For example, in the case of the southern sea otter (Enhydra lutris nereis) a mark-

recapture program now underway provides estimates of recent demography (this paper), but 

cannot shed light on past population declines. 

Given the above-mentioned limitations of mark-recapture studies, it is clearly 

important to develop alternative methods for inferring demography of populations, making 

most effective use of whatever data sets are available (Doak and Mills 1994).  One 

alternative method is the indirect estimation of demographic rates from population age 

structure (Caughley 1977).  Although the reliability of indirect estimates based on standing 

age structure has traditionally been restricted by the assumption of constant population size, 

methodological variations have been proposed that circumvent this assumption (e.g. 

Eberhardt 1988, Udevitz and Ballachey 1998, Doak and Morris 1999).  Unfortunately, for 

many non-harvested species there is no reliable means of measuring the standing age 

structure, particularly if lethal or invasive sampling is not feasible (i.e. for many endangered 

species) and there are no visually obvious individual features that correlate with age.  One 

way around this problem is to sample dead animals rather than live ones: a method proposed 
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by Doak and Morris (1999) provides a means of inferring demographic rates, and variation 

in those rates, using the age structure of death assemblages.  For many vertebrate species, 

carcasses can be collected with little effort and age estimates derived by sectioning of bones 

or teeth (Matson 1981, Bodkin et al. 1997): for example, this method was recently used to 

assess the long-term impact of a major environmental perturbation (the Exxon Valdez oil 

spill) on a population of sea otters in Prince William Sound by measuring changes in the 

age-structure of beach-cast carcasses (Monson et al. 2000a).  In addition to indirect estimates 

based on age-structure, simple population counts conducted over many years may be useful 

for evaluating alternative hypotheses about variation in demographic rates (Hilborn and 

Mangel 1997, Doak and Morris 2002), particularly if these counts are structured by 

developmental stage (e.g. juveniles vs. adults, Pascual and Adkison 1994).  

Here I develop a methodological approach to inferring patterns of demographic 

variation in a population.  In part 1, I extend the methodology described by Monson et al. 

(2000a) to include an assessment of spatial as well as temporal variation in demography, to 

incorporate other data sources besides carcass age structure (in particular, population 

counts), and to more formally incorporate model uncertainty.  Next, in part 2, I apply this 

method to the southern sea otter, a protected sub-species with “Threatened” status under the 

Endangered Species Act (USFWS 2003).  Although range-wide counts indicate 

unequivocally that population recovery ceased in the mid 1990’s (Figure 1.1), it is less clear 

what specific demographic changes were responsible for the change in population dynamics.  

Data presented by Estes et al. (2003) indicate that periods of decline in southern sea otters 

are associated with increased mortality rather than decreased birth rates: I now investigate in 

greater detail the spatial and temporal changes in demographic processes that halted 
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population recovery in the 1990s.  Reliable demographic information is needed to guide 

decision making on management options currently under consideration (Greg Sanders, US 

Fish & Wildlife Service, pers. comm.) and to ensure the long-term recovery of this 

population (USFWS 2003).  The analytical approach described here provides such 

information, and at the same time raises important questions about the way that model 

selection methods can be used in the context of complex models and data sets, as I discuss.    
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Methods, Part 1: Estimating past demographic rates (1992-2001) 

Field data 

Two types of field data were available for the period of interest: population counts 

and beach-cast carcasses classified by age, sex and location of recovery.  Standardized, 

range-wide population counts of the southern sea otter are conducted twice annually (Estes 

and Jameson 1988, Estes et al. 2003): a spring survey (early May) provides the primary 

index of population growth for this population, while a fall survey (early November) is 

conducted primarily to better estimate the pup production data.  On road-accessible stretches 

of coastline (~45% of the current range), counts are conducted by experienced teams of 

shore-based observers using binoculars and spotting scopes.  The remaining areas (~55% of 

the current range) are counted from fixed-wing aircraft: three observers and a pilot conduct 

the aerial counts by flying transects parallel to shore and spaced approximately 800 m apart, 

at an air speed of 90 nm/hr, and at 65 m elevation.  The aerial portions include many low-

density areas, so that the proportion of animals counted from the aircraft is generally about 

20% of the total count.  For both ground and aerial counts, each otter (or group of otters) is 

marked onto a 1:20,000 coastline map, and these maps are later digitized into a GIS 

database.  The net result of the survey is an uncorrected, minimum count of independent 

otters and dependent pups (0 – 6 months of age).  For independent otters I used 11 spring 

counts made during the period 1992–2002: the numbers counted during these surveys ranged 

from 1790 to 2095.  For dependent pups I used the average of the spring and fall counts 

made during the same period: using the mean number from these two surveys reduced the 

effect of any seasonal variation in the number of dependent pups present during a given 

census.  
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The California Department of Fish and Game (CDF&G) and the Biological 

Resources Division of the U.S. Geological Survey (USGS) have maintained a salvage 

network to collect beach-cast carcasses of sea otters since 1968.   Information about beach-

cast carcasses – date of recovery, sex, age-class, length, weight, condition, recovery location, 

and cause of death – is added to a database maintained by U.S. Geological Survey (Pattison 

et al. 1997).  Estes et al. (2003) provided a recent summary of this database, which currently 

contains data from over 3900 carcasses.  Since 1992, tooth-age estimates have been collected 

from all beach-cast carcasses, with the exception of pups (<100 cm total length) and those 

for which an unbroken premolar could not be obtained.  Age-at-death was estimated by 

cementum analysis of a single upper premolar tooth (Bodkin et al. 1997) using consistent 

methods (Matson's Laboratory, Milltown MT), and each age estimate was accompanied by a 

quality code of A (excellent), B (good) or C (poor).  For the current analysis, I used ages 

from all carcasses collected between January 1992 and December 2001, with estimated age 

of 1 or more and quality code of A or B, for a total sample size of 742.  I excluded 0-year old 

carcasses because they were underrepresented in the carcass record to an unknown degree, 

mainly as a result of increased susceptibility of small carcasses to decomposition or 

scavenging (Ames et al. 1983, Pattison et al. 1997, Estes et al. 2003).   

Overview of Modeling Approach 

My general approach can be broken into five steps: 1) use logit functions to predict 

population vital rates (survival and reproduction) that vary by age, sex, time period and 

geographic area; 2) use these estimated rates to construct a modified Leslie matrix for the 

population, and use this matrix to project population growth (and track age structure) over 

the study period.  This results in expected population counts for each year, as well as 
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expected age-distributions of individuals dieing each year; 3) compare the expected 

population counts and carcass age structures with the field data, and use maximum 

likelihood techniques to find the parameter values that best predict the observed data; 4) 

repeat steps 1–3 using many different logit functions to predict vital rates, varying in 

complexity (and thus number of parameters) and allowing for different combinations of 

main effects (age, sex, time and location) and interactions; 5) use information theory (AIC 

methods) to select the set of “best” models (those model forms that provide most predictive 

power and maximum parsimony), and use this set of models to describe underlying 

demographic changes over the study period, while accounting for model uncertainty.  I 

explain each of these steps in the following sections. 

Formulating age-, sex-, time- and location-dependent demographic rates 

Although sea otter births can occur throughout the year (Wendell et al. 1984, 

Jameson and Johnson 1993), I formulated the model in terms of discreet age classes, with the 

time-step set to 1 year.  This simplifies presentation of results, and better corresponds to the 

discreet age scores resulting from the tooth cementum analysis.  A discrete model was also 

appropriate because a) total population counts were made annually, and thus expected vs. 

observed population growth could only be evaluated in yearly intervals; and b) reproduction 

in mature sea otters, although occurring throughout the year, is effectively an annual event at 

the level of the individual: gestation lasts approximately 6 months, followed by the birth of a 

single offspring that is dependant on exclusive maternal care for a period of approximately 6 

months, resulting in a maximum reproductive output of 1 weaned offspring per female, per 

year (Wendell et al. 1984, Jameson and Johnson 1993).  The vital rates of concern are annual 
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survival probabilities (s) and, for females, annual birth rates (b) and weaning success rates 

(w).  I assumed that vital rates might vary as a function of age, sex, time period and location.   

The probability that a single sea otter (age x, sex y, located within geographic area g) 

would survive from year t to year t+1 was estimated using a logit function of the form: 
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where fx, fy, ft, and fg are sub-functions that specify the effects of age, sex, time and location, 

respectively. I conducted all calculations for animals aged 1 year or greater (x = 1, 2… 19 

years old): for the first year class, x = 0, I set survival probabilities equal to that of 1 year 

olds (x = 1).  While this is likely a reasonable approximation (Monson et al. 2000a), I have 

no way to directly gauge its validity because I could not include 0-year old carcasses in the 

maximum likelihood fitting, due to potential bias (see above).   

The first sub-function, fx, accounted for variation due to year class: 
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where [θ1 θ2 θ3 θ4] is an array of fitted parameters (for all equations, θ  symbols indicate 

fitted parameters).  Equation 2 is essentially a linear, 3rd-order polynomial function with an 

additional term added to allow for greater flexibility in fitting juvenile survival.  When 

converted to a logit, this function generally results in an “inverted U” shaped survival curve, 

typical of large mammals (Caughley 1977), but is sufficiently flexible to fit a wide range of 

survivorship schedules.  Two previous demographic models constructed for sea otters 

(Eberhardt and Siniff 1988, Siniff and Ralls 1988) have used a competing-risks function to 
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model survivorship (Siler 1979, Eberhardt 1985), a slightly different approach to that 

employed here.  The chief advantage of the competing-risks function (also called a 

proportional hazards function) is that the fitted parameters can be interpreted directly as age-

specific mortality risks.  The advantages of the logit function (equation 1) are that fewer 

parameters are required to account for the effect of age (4 vs. 5 parameters) and the function 

can be easily expanded to include other effects (e.g. sex, time and location).  For my 

purposes the important question is whether one function provides a better fit to empirical 

data.  Using age-specific survival estimates for southern sea otters in the 1980s as a sample 

data set (Siniff and Ralls 1988), I compared the goodness-of-fit of a 4-parameter logit 

function (i.e. equation 1 and 2) with that of a 5-parameter, competing-risks model (Eberhardt 

1985).  The logit function resulted in a fitted curve virtually identical to that produced by the 

competing-risks function, and provided equivalent goodness of fit (adjusted R2 = 0.995 for 

both functions).  

I incorporated male-female differences in survival using the function: 

65 θθ ⋅⋅+⋅= yxyf y  3 

where y = 0 for females and y = 1 for males.  Equation 3 allows for lower or higher survival 

of males relative to females, as well as a simple age-sex interaction. 

To allow for temporal variation in survival, I used one of two functions: ft
1 was used 

to model smoothly changing survival rates, while ft
2 was used to model discrete time effects.  

In the first scenario, I modeled changes in survival that could be gradual or rapid, but were 

still continuous across years: 
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Equation 4 allows for both linear and higher order time effects, as well as interactions 

between time, age and sex.  As an alternative to a continuous time effect, I also considered 

changes in survival that may have occurred suddenly, effectively treating time as a 

categorical variable: 

16151413
2 θθθθ ⋅⋅⋅+⋅⋅+⋅⋅+⋅= yxAyAxAAft  5 

where A is a switch variable: A = 0 if t < θt, A = 1 if t ≥ θt, and θt is a fitted parameter that 

specifies the temporal breakpoint in survival probabilities.  As with equation 4, equation 5 

allows for interactions between time, age and sex.  As shown, equation 5 allows for two time 

categories; however, by adding additional switch variables (and thus additional fitted 

parameters), I also fit models allowing for three or four time categories.   

I incorporated spatial variation in survival by defining discreet geographic areas: 

specifically, I divided the sea otter’s range in California into different regions within which 

demographic rates were assumed to be constant, but between which rates were assumed to 

vary.  The locations of boundaries between groups, and the actual number of groupings, 

were treated as unknowns to be determined by maximum likelihood analysis.  To make this 

fitting manageable, I first divided the current range of the southern sea otter into 10 

contiguous coastline segments (Figure 1.2), corresponding to areas of similar habitat type 

(Laidre et al. 2001).  Because the average length of the 10 coastline segments corresponded 

roughly to the size of the annual home range of a single adult female sea otter (Ralls et al. 

1996), I considered further sub-division unnecessary.  Spatial groups (g) were next defined 

as sets of one or more of these coastline segments: I did not require that all coastline 
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segments within a group be geographically contiguous.  For example, assuming only two 

group levels (g = 1 or 2), three of the 46 possible schemes to be evaluated would be:  

i)  1 1 1 1 1 2 2 2 2 2 

ii)  1  2 2 2 2 2 2   2 2 2 

iii)  1 2 2 2 2 1 1 1 1 1 

Each postulated grouping scheme was exclusive (i.e. every one of the coastline segments 

was assigned to one and only one group), and all possible permutations of up to four groups 

were considered.  For models with two group levels, the effect of location on survival was 

incorporated using the function: 
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where B is a switch variable: B = 1 if g = 2 and B = 0 if g ≠ 2.  Equation 6 allows for 

interactions between the location effect and age, sex and time effects.  By adding additional 

switch variables (and thus additional fitted parameters), I could allow for three or four 

grouping levels.  I considered the location of each spatial breakpoint to be a fitted parameter: 

thus example i, above, would require 1 additional parameter (specifying the breakpoint 

between coastline segment 5 and 6), while example iii would require 2 additional parameters 

(specifying breakpoints between coastline segment 1 and 2 and between coastline segment 5 

and 6). 

The probability of a mature female sea otter producing an independent juvenile is 

the product of two vital rates, the birth rate (b) and the weaning success rate (w, defined as 

the probability that an offspring will be successfully reared from birth to weaning at 6 
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months, conditional upon survival of the mother).  Because previous studies suggest that b is 

relatively invariant within and between sea otter populations, I set b as a constant, while 

allowing w to vary.  The age of first reproduction reported for southern sea otters ranges 

from 2 to 5 years, with most females producing their first pup by age 3 (Sinha et al. 1966, 

Jameson and Johnson 1993, Riedman et al. 1994).  Published estimates of the birth rate for 

southern sea otters range from 0.88 to 1.07, depending on the method of calculation (Siniff 

and Ralls 1991, Eberhardt and Schneider 1994, Riedman et al. 1994, Eberhardt 1995).  I set 

the age of first reproduction to 3 years, and the annual birth rate for mature females to 0.9 

(Riedman et al. 1994). 

Weaning success in sea otters can vary considerably, unlike birth rates, and has been 

shown to be age dependant, with older females successfully rearing a greater proportion of 

pups to independence (Riedman et al. 1994, Monson et al. 2000b).  For my analysis, the only 

means of fitting weaning success rate was to compare predicted with observed total pup 

counts.  Although annual pup counts provide sufficient information with which to detect 

changes in reproductive success at the level of the population, they are not alone sufficient to 

estimate age-specific patterns of reproductive success.  My solution to this problem was to 

start with a baseline vector of age-specific weaning success rates (w′, derived from 

previously published data) and then allow w′ to be adjusted up or down by a modifying 

function, which could be fit to the raw data.  The baseline values for age-specific weaning 

success were derived from data reported by Riedman and Estes (1994).  To create a 

smoothed w′ vector, I fit a single-parameter logit function to their point estimates: 
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where γ is the fitted parameter (γ = 0.01548, 95% CL = 0.0096–0.0213).  Equation 7 

produced a good fit to the published data (R2 = 0.823), and resulted in an increasing, S-

shaped curve approaching 1 for females aged > 10 years.  Realized weaning success, w, was 

then calculated as the product of the baseline vector, w′, and a modifying function:  
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where B is a spatial switch variable, as defined for equation 6 (the same spatial grouping 

levels, g, were used for weaning success and survival).  As shown, equation 8 allows for 

both a continuous time effect and a categorical location effect (with two spatial grouping 

levels).  I also evaluated categorical time effects (equivalent in form to equation 5), and 

allowed for up to four spatial grouping levels by adding additional switch variables (and thus 

additional fitted parameters).   

The functions shown in equations 3, 4, 5, 6 and 8 can each be modified by adding or 

removing individual terms, or simplified to a single parameter, or even set to equal 0 (in 

which case survival and weaning success become a function of age only, with no sex, time 

or location effects).  Each unique combination of functional forms, in conjunction with each 

unique spatial grouping scheme, represents a hypothetical model of demographic variation in 

the southern sea otter between 1992 and 2001: I will hereafter refer to a particular model 

form as Mi (i =1, 2…I, where I is the total possible number of unique model forms).   Each 

unique model, Mi, will have an associated vector of model parameters, θi (θi = [θ1, θ2 …θn]); 
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the length of vector θi will vary from the simplest model (n=4) to more complex models 

(n>50).  Note that the estimates of survival and weaning success are not themselves model 

parameters, but are derived from the output of the model.  Thus for model Mi, each unique 

combination of parameter values will result in a unique set of survival and weaning success 

estimates.  

Matrix projection: calculation of expected carcass distributions and population 

counts  

I used a highly modified age-classified Leslie matrix (Leslie 1945) to model 

population dynamics over the study period (T = 11 years, from 1992 to 2002), classifying 

animals by age, sex, and spatial grouping (Schoen 1988).   I did not consider immigration or 

emigration (probability of transition between spatial groupings was set to 0).  One useful 

characteristic of population matrices is that initial stationary age-distribution vectors and 

vital rate sensitivities and elasticities can be rapidly derived using standard algebraic 

techniques (Caswell 2001).  Another key advantage in this case is that changes in the age-

distribution and abundance of the living population, as well as expected numbers of age-

classified carcasses produced over a specified time period, can be easily calculated as the 

product and by-product (respectively) of matrix multiplication with an age-classified 

population vector.  Starting with the number of otters, N, in a particular year class (x) and 

sex class (y), at a particular time (t) and within a particular spatial grouping (g), I calculated 

the expected number surviving to time t+1 as:  

gtyxgtyxgtyx sNN ,,,,,,,1,,1 ⋅=++  9 

and I calculated the associated expected number of carcasses produced as: 
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Equation 10 was used to create the sex-, time- and location-specific vectors of expected 

carcass age distributions used in the Maximum Likelihood Analysis (see below).   

Equation 9 was used to calculate the expected numbers of independent otters at time 

t+1 for all year classes but the first: the expected numbers of animals entering the youngest 

year class at time t+1 were calculated as the summed reproductive output of all females in an 

area between t and t+1.  In the interest of simplifying matrix projections, I combined the 

vital rates b and w in order to express reproduction as Rx,t,g→ y, the probability of a female of 

year class x in spatial group g at time t successfully producing a 0-year-old recruit of sex y 

that was alive at time t+1.  The simplest approximation for a birth-flow population would be 

to consider a “typical female” that gives birth exactly half way through the year (Caswell 

2001): for such an individual, Rx,t,g→ y would be calculated as ½ ⋅ bx ⋅ wx,t,g ⋅ sx,0,t,g (i.e. 

assuming 50:50 sex ratio, and accounting for the birth, weaning and survival probabilities for 

the mother).  However, because I wished also to keep track of the expected number of 

dependant pups at time t+1 (for comparison with the annual pup counts), I instead divided 

Rx,t,g→ y into two components: R1
x,t,g→ y the probability of producing a pup that successfully 

weans and survives as an independent juvenile at t+1, and R2
x,t,g→ y, the probability of 

producing a pup that is still dependent during the census at t+1.  The first probability 

accounts for females that pup during the first six months after the census, while the second 

accounts for females that pup during the six months prior to the census: I assume that birth 

probabilities are divided approximately equally between these two groups. 
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For the first component of reproduction, R1
x,t,g→ y, I consider a typical female to be 

one that produces a pup exactly 3 months after the census.  Such a female must survive for ¾ 

of the year if her pup is to be weaned successfully, and the weaned pup must then survive for 

the remaining ¼ of the year as an independent juvenile.  I assumed that the post-weaning 

survival rate was equal to the survival rate for the subsequent juvenile year class, and 

calculated R1
x,t,g→ y as:  
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Calculation of the second component of reproduction, R2
x,t,g→ y, was complicated by 

the fact that the probability of pup mortality is not constant throughout the weaning period 

(Riedman et al. 1994, Monson et al. 2000b), and thus simply considering a “typical female” 

(one that pups 3 months prior to the census) would provide a biased estimate of the number 

of dependent pups present at the census.  Detailed longitudinal data on pup survivorship 

during the 6 month dependency period were only available for Alaska (Monson et al. 

2000b), although the general pattern of a rapidly declining mortality rate after birth was 

consistent with that reported for California (Riedman et al. 1994).  The Alaska pup 

survivorship data were closely fit by the function:  
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where lm is the proportion of pups surviving at month m of the 6 month pup dependency 

period, and w is the mean weaning success rate.  Based on the simplifying assumption that 

the number of pups born each month of the year is approximately equal, I used equation 12 

to calculated R2
x,t,g→ y as:  



 24














⋅⋅⋅= ∑

=

→







5

0
,,0,,,

2
3

1

6

,,6
1

22
1

m
gtx

x
ygtx

m

gtx
wsbR  

13 

Combining equations 11 and 13, I calculated the number of individuals of sex y entering the 

0-year class at time t+1, within spatial grouping g, as: 
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Equation 13 also allowed us to calculate the expected number of dependent pups that would 

be counted at time t+1 in spatial grouping g as: 
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For the first year of the study period, a population vector was initialized as the 

product of the observed population count (independents + dependant pups) and the 

stationary age distribution (SAD) associated with the matrix transition probabilities at t=1.  I 

used the SAD in light of the fact that population growth had been relatively constant for 

many years prior to the study period (at lambda = 1.05; Figure 1.1), presumably allowing 

demographic rates to stabilize.  For all subsequent years, I combined the results of equations 

9, 14 and 15 to calculate the expected number of independent otters that would be counted at 

time t+1 in spatial group g as:  
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Maximum Likelihood Analysis 

For any given form of the demographic model, Mi, there are an infinite number of 

possible combinations of parameter values.  The goal of maximum likelihood analysis is to 

find the single “most likely” set of parameter values, given the observed data sets.  

Specifically, I want to evaluate the relative likelihood (l) of obtaining the observed counts of 

independent otters (Nobs), dependent pups (Pobs), and carcass age distributions (Cobs), given 

the expected counts (Nexp and Pexp) and carcass age distributions (Dexp) predicted by model i 

with parameter values j (denoted hereafter as Mi,j) 

Following Doak and Morris (1999) I assumed that, given a hypothesized age-at-

death distribution, the probability that a randomly selected carcass would belong to year 

class x (x = 1, 2…20) is described by the multinomial distribution.  For each model form and 

set of parameter values, Mi,j, I therefore calculated the likelihood of the observed carcass age 

distribution, Cobs, for each sex, time period and spatial grouping, as: 
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where Cx is the observed number of carcasses in year class x (for all year classes except the 

first) and dx is the expected proportion of carcasses in year class x, calculated simply as Dx/∑ 

Dx.  Equation 17 was solved separately for each sex, year and spatial grouping: the relative 

likelihood of model Mi,j over all sexes, years and spatial groupings is equivalent to the 

product of the l (Cobs | Mi,j) estimates.  
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To calculate the relative likelihood of observed population counts, I assumed that the 

deviations between observed and expected counts were primarily due to observer error, 

rather than process error, and that the deviations were log-normally distributed (Hilborn and 

Mangel 1997).  I let the variance in counts of independent otters be represented by σN
2, and 

the variance in counts of pups be represented by σP
2 (these represent additional fitted 

parameters).  For each model form, Mi,j, I calculated the likelihood of observed counts of 

independents, Nobs, as: 
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and I calculated the likelihood of observed counts of pups, Pobs, as: 
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As with equation 17, equations 18 and 19 were solved separately for each year and spatial 

grouping and then multiplied to obtain an overall likelihood estimate.   

The net likelihood of Mi,j is equivalent to the combined probability of obtaining the 

observed carcass age distributions and population counts across all years and spatial 

groupings, and thus must be calculated as the product of the product of equations 17, 18 and 

19 over all time periods and spatial groupings (and in the case of 17, for both sexes).  To 

simplify calculations, and following standard practice, I converted all likelihood values to 

negative log-likelihoods (L = -log(l)) and instead calculated the sum of the associated L 

values (Hilborn and Mangel 1997).  The maximum likelihood solution for the best parameter 



 27

estimates for model Mi was obtained by minimizing the total L.  To perform model fits I 

used a box-bounded, global optimization routine based on the DIRECT modification of the 

Lipschitzian minimization algorithm (Jones et al. 1993).  Note that I did not weight the two 

data sets (carcass age structure and population counts) according to their expected variability 

(but see Pascual et al. 1997) because the un-weighted likelihood values provided reliable 

results using simulated data sets with a wide range of introduced observer error.  

Incorporating model uncertainty 

Maximum likelihood analysis provided the optimal set of parameter values for each 

unique model form, Mi; however, I had no a priori information with which to judge which 

single model (or sub-set of models) would provide the best approximation to reality.  

Naturally the models with more parameters provided better fit to the data and thus had 

smaller values of L, but this measurement alone provides a poor indication of the robustness 

or utility of a particular model (Hilborn and Mangel 1997).  I used information theory 

criterion to compare and select models, and to formally account for model uncertainty in my 

final, overall estimates of demographic parameters (Burnham and Anderson 1998). 

For each model form, Mi, I calculated an associated AIC value (Akaike 1973): 

iii nLAIC ⋅+⋅= 22 min,  20 

where Li,min is the minimum negative log-likelihood value and ni the number of parameters 

for model Mi.  The AIC value provides an unbiased method for comparing both nested and 

non-nested model forms, penalizing models with large numbers of parameters (Akaike 

1973).  The best-supported model, given the data at hand, has the lowest associated AIC 

value, AICmin.  However, to consider only the single best model (out of all possible models) 

is to ignore uncertainty: put another way, if there were a replicate data set for the time period 
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in question, it is quite possible that the AICmin for the replicate data would be associated with 

a different model form.  To account for this uncertainty, I calculated ∆i for each model (∆i = 

AICi – AICmin), following Burnham and Anderson (1998).  Models with low values of ∆i are 

well supported by the data, while models with high values of ∆i have very little support (that 

is, they provide a very poor approximation to the existing data).  I limited consideration to 

the sub-set of Z models having ∆i values below a cut-off value, ∆crit, which I initially set to 

10 (Burnham and Anderson 1998).  Finally, for each of the Z models considered, I calculated 

Akaike weights, αi as: 
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The αi values sum to 1 for the Z models, and represent a measure of the relative level of 

support for model i (Burnham and Anderson 1998).   

The vast number of possible spatial grouping permutations that could be included in 

my model formulation presented a severe computational challenge.  Rather than finding 

maximum likelihood solutions for every possible combination of functional form and spatial 

grouping scheme, I used an iterative selection approach to limit the number of grouping 

schemes considered.  First, for a subset of 20 functional forms for other model variables (i.e. 

those 20 functional forms that provided the best fit to the data with no spatial groupings), I 

conducted maximum likelihood analysis for all combinations of spatial grouping schemes.  I 

then summed αi values across all models that included each of the 9 possible break points 

(i.e. the 9 boundaries between the 10 coastline sections), and used αi sums as an indication 

of the relative support for each breakpoint.   The three breakpoints with most support each 
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had over 15% of the summed αi, for a total of 61%, while all other breakpoints had less than 

10% (Figure 1.3).  I conducted all subsequent analyses using the 15 spatial grouping 

schemes that included all or a sub-set of these three breakpoints.  The total number of model 

forms evaluated was 35,178, which included all combinations of the 15 spatial groupings 

and biologically plausible formulations of fx, fy, ft, and fg.  I then applied ∆crit to identify the Z 

models to be used for subsequent analysis.  

I next calculated model-averaged estimates of all demographic rates, as well as the 

associated unconditional variance estimates.  To simplify presentation, I let Ŝi represent the 

estimated survival for a sea otter of age x, sex y, at time t and in geographic area g, given the 

particular set of parameter values associated with the maximum likelihood solution for Mi 

(Li,min).  Any set of parameter values other than the maximum likelihood solution will result 

in an estimate, Si,j, which is (by definition) less likely than Ŝi, given the observed data.  The 

probability that Si,j is the correct estimate, relative to Ŝi, can be obtained using the χ2 

cumulative frequency distribution (with one degree of freedom, assuming only one 

parameter at a time is varied, Hilborn and Mangel 1997):  

( ))(2Pr)Pr( min,,
2

1, ijidfji LLS −⋅≥≅ =χ  22 

I sequentially varied each parameter in model Mi, selecting 100 values for each 

parameter from a uniform random distribution with bounds defined as the best-fit value plus 

and minus 10% of the best-fit value.  This resulted in a set of J survival estimates (Si,j) and 

associated probabilities, calculated using equation 22.  I then calculated a model-specific 

variance estimate for Si as: 
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Model-averaged estimates of age-specific survival ( Ŝ ) were calculated (following Burnham 

and Anderson 1998) as: 
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Similarly, using the model-specific variance estimates, I calculated unconditional variance 

estimates as: 
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The model averaged estimates for weaning success rates, as well as their associated 

unconditional variance estimates, were calculated in an analogous fashion.  I evaluated the 

effect of including more or fewer models by varying ∆crit: this parameter was then set to that 

value at which further increases produced no significant changes in the model-averaged 

estimates (i.e. the estimates stabilized to 2 decimal points).   

As a graphical evaluation of the goodness of fit of the model estimates of 

demographic rates, I compared the matrix projection of population growth (using best-fit 

model to generate vital rates) with the observed population counts for the period 1993–2001.  

Graphical comparisons of expected and observed population dynamics were made for the 

population as a whole, and also for 4 major geographic sub-divisions: ordered from north to 

south, these were 1) the Northern periphery of the range (Half Moon Bay to Santa Cruz); 2) 

the North-center of the range (Santa Cruz to Point Sur); 3) the South-center of the range 
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(Point Sur to Pt. Buchon); and 4) the Southern periphery of the range (Pt. Buchon to 

Gaviotta; Figure 1.2).    

Demographic rates and their unconditional variance estimates were calculated for 20 

year classes; however, for presentation purposes I collapsed these 20 estimates into 4 

broader categories corresponding to descriptive age classes: juveniles (age 0–1 years), sub-

adults (age 2–3 years), prime-age adults (age 4–10 years) and old adults (11–20 years).  

Collapsing the year classes into these age classes facilitated comparisons with survival 

estimates derived from telemetry-based studies (see below), for which survival is generally 

estimated by age class rather than year class (Siniff and Ralls 1991).  For each age class, a, 

model-averaged estimates for survival and weaning success rates, aŜ  and aŴ , were 

calculated by taking the arithmetic means of the survival and weaning rates of the 

constituent year classes.  Variances for each age class were calculated using the Delta 

method (Hilborn and Mangel 1997), a procedure for calculating the variance associated with 

a parameter that has been derived from several other variables (in this case, each age class 

estimate is derived from several year class estimates).  I assumed (conservatively) that the 

estimates for year classes within an age class were highly correlated, specifically that ρ = 1, 

and therefore that the covariance of any two year classes was equal to the square root of the 

product of their individual variances, leading to an unconditional variance estimate for 

survival of age class a (where a consists of n constituent year-classes, x = 1, 2…n) of: 
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where xa SS ˆˆ ∂∂ was set to 1/n for all year classes (i.e. I did not weight by the number of 

individuals in each year class).  Variances for age class-specific weaning success rates were 

calculated in an analogous fashion. 

I calculated 95% unconditional confidence intervals for all estimates using a logit-

based “back transform” method (Burnham and Anderson 1998).  For a particular parameter 

estimate, p, the lower and upper 95% confidence limits (pL and pU, respectively) were 

calculated as: 

Vpp
pp

Vpp
pp UL )1(

,
)1( −+

=
−+

=  
27 

where: 












−
⋅

= −

)1(
var

exp 025.01

pp
pZ

V  
28 

and where pvar  is the unconditional variance estimate for the parameter in question.     

All analyses in Part 1 were conducted using MATLAB programming language (The 

Math works Inc.), and maximum likelihood function optimization was performed using 

TOMLAB, a third party optimization program for MATLAB (Holmström 1999).   
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Methods, Part 2: Estimating recent demographic rates (2001-2004) 

Between October 2000 and September 2003, a total of 115 adult sea otters were 

captured and tagged as part of a long-term mark-recapture study of southern sea otters.  In 

order to maximize statistical power for one age class, and based on indications from the 

carcass record that decreased adult survival might be largely responsible for the faltering 

recovery of the population as a whole, I intentionally biased sampling to capture mostly 

adults: consequently, sample sizes are too low at this time to allow estimation of survival for 

juveniles or sub-adults.  

In general, capture and instrumentation of study animals followed methods 

described for a previous study (Siniff and Ralls 1991): potential study animals were selected 

arbitrarily (with the exception of the age-bias mentioned above) and captured by re-breather-

equipped divers using “Wilson Traps” (McCleneghan and Ames 1976).  Study animals were 

marked with color-coded flipper tags, which allow visual identification in the field, and were 

instrumented with abdominally-implanted VHF radio transmitters (ATS Inc., Isanti, MN) 

equipped with reliable, medical-grade batteries (Medtronic Inc., Minneapolis, MN).  After 

anaesthetizing the study animals, implant surgeries were performed by qualified 

veterinarians following a standardized procedure (Williams and Siniff 1983, Monson et al. 

2001).  A series of standardized data and measurements, including weight, length, tooth 

condition, and body condition were also obtained from each individual.  A reversal agent 

was used to revive the animals after surgery, and they were immediately released back to 

their capture locations (usually within 2 hours of their initial capture).  All of the radios were 

equipped with thermal monitors that allowed us to record exact body temperature and/or to 

detect mortality whenever the animal was in radio contact (mortality was assumed when the 
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internal temperature dropped below 35C, and the carcass was retrieved for necropsy 

whenever possible).   

I partitioned my sampling effort into 3 study areas: 30 females and 13 males were 

captured at Monterey (north-center of range), 35 females and 12 males were captured at San 

Simeon (south-center of range) and 25 males were captured at Pt. Conception (southern 

periphery of range).  At Pt. Conception females were not captured because only males utilize 

this southern-most portion of the range.  All study animals were monitored regularly, both 

by visual observation and ground-based and/or aerial-based telemetry, for a minimum of 2 

years or until they died or disappeared.  In the San Simeon study area, shore-based or boat-

based observers were able to visually locate study animals 5–7 times per week, allowing for 

reliable estimates of reproductive parameters (birth rates and weaning success rates) as well 

as survival.  Visual re-sightings were slightly less frequent in the Monterey study area (at 

least 2 per week), allowing for reliable survival estimates but potentially biased reproductive 

estimates (Eberhardt and Schneider 1994).  Males captured at Pt. Conception tended to move 

frequently and over great distances throughout the range, making visual observation difficult 

and highly sporadic; however, twice-monthly range-wide aerial scans (using a Cessna plane 

equipped with ATS radio-tracking equipment) allowed me to verify location and survival 

status of these animals.  Results from the current study and from a previous study (that 

utilized identical instrumentation, Siniff and Ralls 1991) indicate that the VHF transmitters 

were generally reliable for 2 years of deployment.  Based on those study animals with 

precisely-known radio transmitter life spans (N = 25, mean = 756 days, 95% CL = 629–886), 

there appeared to be a negligible failure rate for the first 18 months post-deployment; 

consequently, I restrict my analyses to the first 2 years of data for all animals, and treat all 
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disappearances within 18 months of capture as presumptive mortalities.  In total, 8 of 41 

mortalities (20%) were presumptive and the remaining 33 were confirmed (carcasses were 

recovered). 

I analyzed survival data using a Kaplan-Meier “known-fates” model that allows for 

staggered entry of study animals (Pollock et al. 1989), and I conducted all computations 

using Program MARK (White and Burnham 1999).  I evaluated a range of model forms, 

ranging from the simplest possible model (no variation in survival rates) to more complex 

models that allowed for location effects (study area), sex and time effects, and all possible 

interactions.  Temporal effects evaluated included both study year and seasonal effects, 

where seasons were defined as winter (January–April), summer (May–August) and fall 

(September–December).  I did not allow for an age effect because all study animals were 

considered to belong to a single age class (prime age adults).  For each model form 

evaluated, I calculated AIC values (equation 20) and Akaike weights (αi, equation 21) and 

used these to select the best-supported suite of models, limiting consideration to models 

having ∆i values below 10.  I used model averaging to incorporate model uncertainty into the 

final estimates (see methods for Part 1, Burnham and Anderson 1998).   

I restricted analysis of reproductive parameters to the San Simeon study group, 

where visual re-sightings were most frequent and where the likelihood of missing 

unsuccessful reproductive events was minimal.  I calculated mean birth rate using the “direct 

method” (sensu Eberhardt and Schneider 1994):  
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where K is the total number of females monitored for at least 365 days, bk is the number of 

observed births observed for female k, and Nk is the number of days female k was monitored.   

For weaning success, I considered all pups with a dependency period of 120 days or more to 

have been weaned successfully (Riedman et al. 1994), and estimated mean weaning success 

across females.  

All estimates reported in the text are followed by 95% confidence intervals (CI95) 

and the error bars in figures represent ± 1 standard error (unless otherwise indicated).  With 

the exception of the birth rate and weaning success rate estimates derived from mark-

recapture data, model-averaged estimates are reported throughout, and confidence intervals 

and standard errors reflect unconditional sampling variances.  The relative degree of support 

for specific model effects is represented by the summed AIC weights (Σαi) of all model 

forms in which the effect was present.  
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Results, Part 1: Past demographic rates (1992-2001) 

There were 210 model forms having ∆i ≤ 10; however, after sorting models by their 

AIC values (from lowest to highest), αi values were found to be extremely low (≤ 0.005) for 

all but the first 35 models (Figure 1.4).  Reducing ∆i,crit (the cut-off value for model 

consideration) down to 5 had no measurable effect on model-averaged vital rate estimates; I 

therefore re-set ∆i,crit to 5, restricting subsequent analyses to the 34 best-supported models 

(Appendix A). 

The model-averaged estimates of age-specific vital rates lead to a demographic 

schedule that is consistent with previous models (Siniff and Ralls 1988): annual survival was 

low for juveniles, increased to a maximum for animals aged 4–8 years, and then decreased 

gradually for older adults (Figure 1.5).  Female survival was higher than that of males at all 

ages and an age-sex interaction was present in 32% of models (Σαi = 0.23), resulting in an 

accelerated decrease in survival with age for males as compared to females: such a pattern is 

consistent with the female-biased sex ratio reported for southern sea otters (Jameson 1989).  

In general, the model results indicated similar temporal and spatial trends in survival for 

males and females (Appendix B), but because changes in male survival rates have little 

effect on population growth (Caswell 2001) I report all further results for females only.  

In 26% of models (Σαi = 0.20) the weaning success rate was lowered from the 

baseline, but was un-adjusted in all remaining models.  For adult females, the model-

averaged estimate of weaning success was 0.61 (CI95 = 0.48–74).  There was little (if any) 

support for either spatial or temporal variation in weaning success: 1 of the 34 models 
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considered included an increase in weaning success with time (Σαi = 0.01), and none of the 

best-supported models included a spatial effect. 

In contrast to weaning success rates, survival rates were variable over both space 

and time (a comprehensive table of model-averaged survival rates is provided in Appendix 

B).  Almost all models considered (97%, Σαi = 0.95) included a spatial effect, and while 

there were several possible grouping schemes (Appendix A), the common pattern in all cases 

was lower survival in the north-center of the range.  Survival rates were somewhat higher in 

the northern periphery and south-center of the range, and were highest at the southern 

periphery of the range (Figure 1.6).   The majority of models also included a time effect 

(65%, Σαi = 0.60), which took the form of a decrease in survival rates over the study period: 

for example, adult female survival in the north-center of the range was 0.87 (CI95 = 0.83–90) 

in 1992 but decreased to 0.84 (CI95 = 0.77–89) in 2001.  Although the nature of the temporal 

change was continuous in many of these models (Σαi = 0.32), there was also substantial 

support for a categorical time effect (Σαi = 0.28), suggesting a sudden drop in survival 

between 1994 and 1995 (Figure 1.7).  Models with a categorical time effect (as opposed to a 

continuous effect) were penalized for having an additional parameter (θt, the location of the 

temporal break), thus the degree of support for a sudden drop in survival in the mid 1990’s is 

unlikely to be spurious.    

The spatial and temporal trends in survival were similar but not identical for all 

age/sex classes: 38% of the models considered (Σαi = 0.36) included interaction effects of 

some kind.  Three interactions were most common: juvenile and sub-adult survival tended to 

be relatively higher in the southern half of the range, the decrease in survival over time was 

not as pronounced in the south, and the temporal change in survival was relatively greater 
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for older animals, such that the model-averaged adult survival rates tended to converge with 

juvenile survival rates by 2001 (Figure 1.7).  The proportional decrease in survival between 

1992 and 2001 was greatest for old adults; however, given the age-specific patterns of matrix 

elasticity values (Figure 1.8), decreased survival of prime-age adults likely contributed most 

to the observed change in population growth over the 1990’s.  

The model-averaged estimates of vital rates resulted in a relatively close match 

between expected and observed population growth, when compared at the level of the entire 

population (Figure 1.9A).  Interestingly, there was greater disparity between expected and 

observed counts when plotted separately for the four major geographic regions (Figure 

1.9B).  However, the greatest discrepancies were between expected and observed counts in 

the south-center and southern periphery of the range, and annual discrepancies were strongly 

and negatively correlated for these two areas (ρ = -0.82, P = 0.002), suggesting that the 

disparities reflect (to a large degree) the movement of animals between regions.    
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Results, Part 2: Recent demographic rates (2001-2004) 

In total, 27 adult females were monitored for at least 365 days and were used for 

estimation of reproductive rates.  The average monitoring period was 628 days per female, 

for a total of 16,950 monitoring days, and 46 pups were produced within this period.  

Although pups were produced year-round, the frequency of pup births was higher between 

September and February (n = 35) than between March and August (n = 11).  Individual 

females produced an average of 0.98 pups⋅yr-1 (standard error = 0.059, CI95 = 0.86–1.09) and 

had a mean weaning success rate of 0.61 (standard error = 0.088, CI95 = 0.57–0.65).  Both 

birth and weaning success rates were slightly higher than the equivalent rates reported for 

the 1980s (0.90 and 0.57, respectively: Siniff and Ralls 1991), although these differences 

were not statistically significant.  

The survival analysis resulted in 10 model forms having ∆i ≤ 10.  The two best-

supported models (Σαi = 0.71) included both a location effect and a seasonal effect, but no 

variation due to sex or study year (Appendix C).  There was overwhelming model support 

(Σαi = 0.80) for a difference in survival between the center of the range (Monterey and San 

Simeon study areas) and the Pt. Conception study area, but very little support (Σαi = 0.02) 

for a difference between Monterey and San Simeon.  Animals from Pt. Conception 

experienced higher survival than animals from the center of the range (Table 1.1), consistent 

with the spatial patterns reported in Part 1 (Figure 1.6).  In the Monterey and San Simeon 

study areas, survival during the summer months was lower than fall and winter (Figure 

1.10); this trend was not evident in the Pt. Conception study area, where summer survival 
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rates were either identical (Σαi = 0.42) or slightly higher (Σαi = 0.54) than fall and winter 

survival rates.   

The recent survival rates reported here for adult females are considerably lower than 

the estimates reported from the 1980’s (Table 1.1), even though both studies used identical 

methodologies and spanned the same geographical range.  The trend for males is somewhat 

different, apparently having increased since the 1980’s (Table 1.1).  Combining the recent 

survival estimates and the 1980’s estimates (both derived from mark-recapture data) with the 

estimates for the 1990’s (derived from carcass age-distributions and census counts; Part 1) 

provides a consistent and comprehensive picture of temporal variation in adult female 

survival (Figure 1.11).   
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Discussion 

The practical conclusion that can be drawn from the analyses presented here is that 

average survival rates, particularly survival of prime-aged adult females in the north-center 

of the range, decreased substantially over the 1990’s, with indication of a sudden drop in 

survival after 1994 (Figure 1.11).  In contrast to variation in survival rates, it appears that 

reproduction (birth rates and weaning success) changed very little over the same period.  The 

spatial and temporal trends described here can be used to focus future research on those 

factors most likely to drive population changes; in particular, factors that impact survival of 

adult females in the center of the range are of greatest concern.  A number of recently 

identified diseases in southern sea otters, including protozoal encephalitis and idiopathic 

cardiomyopathy, appear to be responsible for a considerable proportion of the mortality of 

adult females within the center of the range (Thomas and Cole 1996, Miller et al. 2002, 

Kreuder et al. 2003), and the proximate and ultimate causes of these diseases should be the 

subject of further research.  I emphasize that the methodological approach described here 

does not directly test the relative importance of specific factors that may be affecting 

survival (e.g. diseases, contaminants, fishing gear entanglement); however, my results can be 

incorporated into sensitivity analyses that do (e.g. Kreuder et al. 2003, Gerber et al. in press).  

Some of the patterns that emerged from these analyses raise more questions than 

they answer.  For instance, the seasonal variation in survival probability (Figure 1.10) is 

difficult to explain, especially considering that the observed pattern – lower survival in the 

summer – seems to be the opposite of that described for sea otters in Alaska and Russia (e.g. 

Kenyon 1969, Bodkin et al. 2000).  This pattern is consistent, however, with the reported 

increase in beach-cast carcasses retrieved in summer months during periods of population 
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decline in California (Estes et al. 2003).  One explanation for this pattern might be increased 

incidence of disease in summer, associated with some seasonally-driven environmental 

factor (e.g. warm water algal blooms).  Another possible explanation for a seasonal trend in 

survival relates to female reproductive status: because there is a higher frequency of pup 

births in the winter, there must be a corresponding mid-summer peak in the number of 

females having recently weaned pups.  Females generally lose weight throughout the pup 

dependency period (Monson et al. 2000b), and individuals that are otherwise nutritionally 

stressed are probably at their poorest body condition immediately post-weaning, at which 

time they are also generally in estrous and may experience repeated mating interactions with 

males.  The interaction of all these stress factors may cause a mid-summer peak in female 

mortality; the problem with this explanation is that the seasonal variation in survival appears 

to affect males equally.  A third explanation (not mutually exclusive of the others) pertains 

to diet profitability: seasonal variation in the nutritional and/or energetic composition of 

some sea otter prey species is known to occur (related to prey reproductive cycles, e.g. Watt 

et al. 2000), and may lead to seasonal peaks in the degree of nutritional or energetic stress 

experienced by some individuals.  All of these possible explanations represent testable 

hypotheses, and further data will be needed to properly evaluate their relative importance.  It 

is worth noting, however, that the latter two explanations can be encompassed by a broader 

hypothesis of density-dependant population regulation.  The seasonal decrease in survival 

was observed for animals at the center of the range, where re-colonization occurred earliest, 

densities are highest, and where it might be expected that females would be in poor body 

condition and thus subject to stress-related mortality associated with pup weaning and/or 

variation in prey profitability.  
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The hypothesis of density-dependant population regulation would seem to be 

consistent with a number of the trends reported here, including the seasonal variation in 

survival and the spatial pattern of lower survival in the center of the range (Laidre et al. 

2001).  There are a number of inconsistencies in this scenario, however, the most important 

being the age-specific trends in survival (Figure 1.7).  Based on a comparative analysis of 

sea otter populations in Alaska at varying densities and stages of population recovery, 

Monson et al. (2000b) concluded that density-dependent regulation of sea otter populations 

occurs primarily as a result of a decrease in weaning success rate and lower juvenile 

survival, while adult survival varies much less.  In contrast, the results presented here for the 

California population suggest that weaning success has remained unchanged and adult 

survival has declined more than juvenile survival.  These results are perplexing in light of 

the fact that variation in prime-age adult survival has the greatest potential impact on 

λ (Figure 1.8): life history theory suggests that this should be the very stage most buffered 

by selection (Pfister 1998)1.  If this is so, then one might reasonably hypothesize that the 

source(s) of mortality responsible for the reduction in adult survival are “novel” in an 

evolutionary sense, and not a part of the historical selection regime for this population.  

Density dependence may indeed be a contributing factor to the current cessation of 

population recovery, but the age-specific patterns of variation in survival suggest that some 

density-independent, extrinsic factor (or combination of factors) may also be involved in 

driving recent trends.  

                                                      

1 Note that the old adult age class actually experienced the greatest decrease in survival, and 
also has the lowest associated elasticity, consistent with the pattern described by Pfister (1998).   
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Incorporating the estimated demographic rates into a projection matrix produced 

expected dynamics that were consistent with observed trends for the population as a whole 

between 1993 and 2001 (Figure 1.9A); however, the lack of close fit between expected and 

observed counts within each geographic region (Figure 1.9B) were surprising because the 

logit functions allowed sufficient flexibility to fit even complex patterns of spatial and 

temporal variation.  To some degree this failure to track year-to-year variation in observed 

counts reflects the constraining influence of the age-structure data, which would tend to 

“smooth out” short-term variation and instead force the model to track longer-term trends.  

Another reason for the discrepancies is highlighted by the negatively correlated 

discrepancies in adjoining areas (Figure 1.9B), which suggests that some of the variation in 

counts at the regional level reflects movement of animals between regions, a process not 

accounted for in the current projection matrix.  Movement between sub-populations could 

(and should) be included in future analyses and management considerations, and data from 

ongoing telemetry studies (USGS unpublished data) and previous studies of this population 

(Ralls et al. 1996) can be used to parameterize individual movement rates.   

The concordance between the estimates of adult female survival rates derived from 

multiple data sets and independent analyses (Figure 1.11) provides strong support for the 

temporal and spatial patterns indicated by both methodologies (Part 1 and Part 2, above).  

Perhaps the most perplexing of these patterns is the temporal trend of declining female 

survival, because this would suggest continued negative population growth in the center of 

the range, a prediction that would seem to be countered by an apparent stabilization of 

population numbers in recent years (Figure 1.1).  There are only two possible explanations 

for this discrepancy: the estimates of female survival are biased low (and population growth 
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has in fact stabilized), or else the apparent leveling-off of population counts is misleading.  

The first explanation seems unlikely given the concordance between independently derived 

estimates, the substantial sample sizes used for both analytical approaches, and the fact that 

virtually all the adult females used for the mark-recapture analysis had confirmed fates after 

two years (thus precluding any bias created by confusing disappearances with mortalities).  

The second explanation is obviously a great deal more troubling, and raises the question of 

why the range-wide censuses would fail to reflect a continued decline.  Source-sink 

dynamics could potentially obscure such a trend from detection (Pulliam 1988, Doak 1995) 

if there were sufficient immigration of animals from the edges of the range, where survival 

rates are high (Figure 1.6, Table 1.1) and population growth is still positive.  While this 

scenario is consistent with the spatial patterns of variation in survival rates and with the 

extensive northern movements of adult male otters captured at the south end of the range 

(USGS, unpublished data), further population counts and mark-recapture data will be 

required to properly test this hypothesis. 

In addition to the insights provided about the southern sea otter, two aspects of my 

methodology have broader implications for population analyses of other species.  First, I 

have described an extension of an existing technique (Doak and Morris 1999, Monson et al. 

2000a) that allows for incorporation of additional information, in particular pup counts 

(which are used to better fit reproductive rates), and for assessment of spatial as well as 

temporal variation in survival.  Secondly, and perhaps more importantly, my general 

approach to incorporating uncertainty may be applicable to other threatened populations for 

which there are many possible demographic scenarios to consider, but limited data for 

analysis and no a-priori information with which to identify a few “most likely” scenarios.  It 
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is important at this point to emphasize that I am using an information theoretic approach in 

an exploratory way here; I am not hypothesis testing or striving for a generally applicable 

model to apply to all situations.  The most recognized and definitive reference on 

information theory and model selection written for ecologists (Burnham and Anderson 1998) 

is very clear on the dangers of “data dredging”, a term that is somewhat vague but could be 

taken to refer to any approach other than consideration of a small, exclusive set of alternative 

hypotheses (e.g. a model with vs. without a time effect).  By this definition, the 

methodological approach described in Part 1 is in grave danger of violation because I 

consider such a large suite of possible model forms.  I propose that if one can properly 

account for model uncertainty (i.e. using model averaged estimates and unconditional 

variances, sensu Burnham and Anderson (1998), then a maximum likelihood approach used 

in this exploratory way can be an appropriate first step towards the elucidation of key 

demographic processes and spatial/temporal patterns or variation.  The approach I suggest 

can focus attention on a smaller number of well-supported, testable hypotheses about factors 

underlying observed trends, while helping to divert attention away from other, less important 

factors.  In the case of the southern sea otter, for example, my results provide support for the 

notion that mortality of males or juveniles at the south end of the range is unlikely to have 

contributed significantly to the population decline in the 1990’s.   

Animal populations are influenced by an almost infinite assortment of deterministic 

and stochastic forces that together affect demographic processes in often complex ways.  

The vast majority of these forces lead to demographic variation that is immeasurably small 

and can thus be safely ignored by biologists wishing to model populations to evaluate their 

viability or select among management options.  Statistical hypothesis-testing techniques and 
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model selection criteria are typically used by biologists to reject “insignificant effects” or to 

select the most parsimonious model or hypothesis (Hilborn and Mangel 1997, Burnham and 

Anderson 1998).  Unfortunately, in most systems there is considerable uncertainty 

underlying every component of the analysis, and the risks of a wrong decision resulting from 

such uncertainty are very rarely taken into account (Burgman et al. 1993).  I agree with 

Pascual et al. (1997) that a reasonable way of dealing with this uncertainty is to evaluate 

many alternative models, and then use formal techniques for incorporating the uncertainty 

into parameter estimates (Burnham and Anderson 1998).  Although this may entail 

sacrificing a certain degree of heuristic simplicity (three alternative model forms are easier to 

contemplate than 30) as well as precision of the resulting parameter estimates, it may also 

provide a more realistic picture of the range of potential variation in the study system.  
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Tables  

Table 1.1 Maximum Likelihood model-averaged estimates of annual survival rates for adult 
sea otters, derived from telemetry-based, mark-recapture data. 
 
Sex/Study Group Mean SE L95 U95 
Females     
1984-86, Center of Range 1 0.91 0.088     -     - 
2001-03, Monterey peninsula 0.832 0.059 0.683 0.917 
2001-03, San Simeon 0.831 0.060 0.682 0.916 
Males     
1984-86, Center of Range 1 0.61 0.167     -     - 
2001-03, Monterey peninsula 0.833 0.060 0.683 0.918 
2001-03, San Simeon 0.833 0.060 0.681 0.918 
2001-03, Pt. Conception  0.864 0.095 0.567 0.956 

 

1 estimates reported by Siniff and Ralls (1991). 
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Figure 1.1.  Annual range-wide counts of southern sea otters, Enhydra lutris nereis, 
conducted between 1984 and 2002.  Values represent the three-year running average of the 
spring counts of independents (solid line) and the annual average of the spring and fall 
counts of dependent pups (dashed line). 
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Figure 1.2.  Range of the southern sea otter along the mainland coast of California (range 
limits based on 2003 survey data) divided into 14 sections of similar sub-tidal habitat (Laidre 
et al. 2001).  These sections were used as fundamental geographical units for my analysis of 
spatial variation in demography, although the northern-most units (1a and 1b) and the 
southern-most units (10a, 10b, 10c and 10d) were collapsed into sections 1 and 10, 
respectively, in order to achieve sufficient carcass sample sizes for each of the 10 remaining 
coastline sections.  Also shown are 4 broader geographical sub-divisions: the northern 
periphery (consisting of coastline section 1), north-center (sections 2-5), south-center 
(sections 6-9) and southern periphery of the range (section 10). 
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Figure 1.3.  The relative degree of model support for all potential arrangements of 10 
coastline sections into areas of similar demography.  Summed AIC weights (αi values) are 
shown at each potential break-point: the three peaks of the resulting distribution correspond 
to the best-supported break locations. 
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Figure 1.4.  Profiles of AIC weights (αi values, top graph) and ∆i values (bottom graph) for 
the 210 models with ∆i ≤ 10.  The αi values approach an asymptote after model 35 (indicated 
by dotted line), which also corresponds to the final cut-off value (∆i = 5) used to select 
models for inclusion in model averaging. 
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Figure 1.5. The Age-specific schedule of annual survival rates for females (solid line) and 
males (dashed line), as well as weaning success rates (dotted line).  Model-averaged 
estimates and their standard errors are shown for 1992 in the north-center of the range.    
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Figure 1.6.  Spatial variation in the annual survival rate of adult females.  Center curve 
shows the model-averaged rate for 1992, while dashed lines indicate the unconditional 95% 
confidence bounds.   
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Figure 1.7.  Temporal variation in the annual survival rate of adult females (solid lines) and 
juvenile females (dashed lines).  A) Estimated survival rates for 1992-2001 in the north-
center of the range; B) estimated survival rates for 1992-2001 in the southern periphery of 
the range.  
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Figure 1.8.  Increase in annual mortality rates (ma = 1 – Sa) between 1992 and 2001 (black 
bars) and corresponding survival elasticity values (white bars) for 4 female age classes: 
juveniles, sub-adults, adults and old adults.  Elasticity values were derived algebraically 
from the 1992 matrix and summed for each age class.   
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Figure 1.9.  Expected trends in population abundance between 1993 and 2001, as predicted 
by matrix projections using the maximum likelihood estimated vital rates.  Observed 
population counts are plotted for comparison.  A) Expected vs. observed counts for the entire 
population; B) expected vs. observed counts for 4 major geographic sub-divisions of the 
range. 
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Figure 1.10.  Seasonal variation in survival probabilities for adult females in the center of 
the range, as estimated from mark-recapture data.  Model-averaged estimates of quarterly 
survival are shown, spanned by their 95% confidence intervals. 
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Figure 1.11.  Synthesis of survival estimates derived from two independent analyses and 
data sets, summarizing the inferred temporal changes in adult female survival in the center of 
the range.  The 1985 estimate is that reported by Siniff and Ralls (1991).  
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Chapter 2. Alternative foraging strategies in southern sea otters 

Introduction 

Intraspecific variation in diet and foraging behavioral strategies is a characteristic of 

many animal populations (Partridge and Green 1985, Bolnick et al. 2003).  Conspecifics 

may utilize different foraging strategies for a variety of reasons: morphological or 

physiological differences (Smith 1987, Barbosa et al. 2000), geographic variation or habitat 

differences (Kruuk and Moorhouse 1990, Tanaka 1991), sex-, age- or stage-dependent 

strategies (Clarke et al. 1998, Reinhardt and Healey 1999) and frequency-dependant 

variation (Beauchamp et al. 1997) have all been documented.  There is also both theoretical 

(Glasser 1982) and empirical evidence (e.g. Schindler et al. 1997) to suggest that the degree 

of individual specialization increases as forager populations become food-limited at high 

densities, and when intraspecific competition exceeds interspecific competition (Smith and 

Skúlason 1996).  Alternative foraging strategies are often associated with genetically-

maintained polymorphisms (Skúlason and Smith 1995), but distinct behavioral strategies 

may also exist without any clear genetic basis (Clark and Ehlinger 1973).  For example, 

cultural transmission of individual foraging strategies can result in distinct behavioral 

morphs that persist over generations and have dynamics that are quantitatively and 

qualitatively similar to those reported for genetically transmitted polymorphisms (e.g. 

Sutherland et al. 1996, Estes et al. 2003b). 

 Individual differences in diet and feeding behavior that are not associated with 

genetically-maintained polymorphisms are interesting because foraging behavior is thought 

to be under strong selection due to its direct impact on fitness (Emlen 1966, MacArthur and 
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Pianka 1966, Pyke et al. 1977, Mangel and Clark 1988).  This is particularly true for food-

limited predators: that is, species for which the relative abundance of prey resources is the 

dominant factor limiting population growth (in contrast to species that are primarily limited 

by space, suitable nesting sites or predators).  Questions raised by the existence of multiple 

foraging strategies focus primarily on the implications for individual fitness: how do 

different strategies compare with regards to their rate of energy return, are they associated 

with environmental variation (e.g. spatial or temporal differences in prey abundance), and 

what mechanisms prevent convergence on a single “optimal” strategy?  Here I use the term 

“foraging strategy” to refer to a distinct pattern of diet composition and foraging behavior 

that can be easily distinguished from other such patterns.  Note that this is qualitatively 

different from purely random variation between individuals, which can be explained by 

environmental stochasticity in combination with additive variation in the phenotype of 

individual foragers and random sampling effects.  Random variation in diet composition and 

feeding behavior is to be expected even if all individuals are selected to use a single strategy: 

in contrast, alternative strategies represent distinct and fundamentally different solutions to 

the problem of energy acquisition (Clark and Ehlinger 1973). 

The co-existence of multiple diet types or foraging strategies is especially puzzling 

if these strategies do not provide an equal rate of energy gain.  Such differentials may be 

adaptive if there are other costs or benefits, such as lower predation risk, that increase the net 

realized fitness of apparently sub-optimal strategies (Abrams 1993, Clark and Mangel 2000).  

Another mechanism that may serve to maintain multiple strategies in a population is the 

existence of local fitness optima: that is, each mode of behavior or diet type corresponds to a 

peak in a “fitness surface”, while intermediate points have lower values and thus lie in 
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“valleys” (Smith 1987, Benkman 1993).  A fitness surface is simply a graphic representation 

of the shape of selective pressures on one or more phenotypic traits (Schluter 1988, Sinervo 

2000).  The forces generating and maintaining behavioral polymorphisms are likely to be the 

same as for genetic polymorphisms: correlational selection on suites of interacting traits 

generates multiple fitness optima (Sinervo and Svensson 2002), and the distinct behavioral 

strategies corresponding to each peak in the fitness surface are reinforced and maintained by 

frequency dependent selection in conjunction with disruptive selection against intermediate 

strategies (Schluter and Nychka 1994, Smith and Skúlason 1996, Smith and Girman 2000, 

Benkman 2003).    

 Aside from the evolutionary significance of intraspecific variation (Futuma and 

Moreno 1988), patterns of variation in diet and foraging success are important to measure if 

we are to fully understand the role of food-limitation in regulating predator populations.  

There are abundant examples of predator populations whose diet or foraging behavior 

change as a function of food abundance (e.g. Costa et al. 1989, Monaghan et al. 1994, 

Croxall et al. 1999, Metcalfe et al. 1999); however, the presence of alternative foraging 

strategies or specialist types may tend to mask or complicate these patterns.  Declines in the 

relative abundance of a particular prey type will affect individuals to differing degrees 

depending on their diet specialization (e.g. Boag and Grant 1981); consequently, we might 

expect greater variability in foraging success (and thus greater variation in individual fitness) 

in a food-limited population of specialists than in a food-limited population of generalists.  

Age-, sex- and habitat-related differences in diet add further complexity to the predicted 

patterns of food limitation.  Characterizing the sources of variation in diet – individual, 
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spatial and temporal – can help to clarify the relationships between foraging ecology and 

population dynamics (Partridge and Green 1985).   

 Aquatic, homeothermic vertebrates that dive to obtain their food provide excellent 

examples of energy-limited predators, and a number of recent studies have used diving birds 

and mammals to test predictions of foraging theory (Ball 1994, Wilson et al. 1996, Boyd et 

al. 1997, Mori 1998).  Due to high metabolic demands of a marine existence (Costa and 

Kooyman 1982, Adams et al. 1991, Croll and McLaren 1993) and the often unpredictable or 

patchy distribution of their prey resources, the fitness of many marine diving birds and 

mammals is strongly tied to foraging efficiency and energy acquisition rates (Croxall et al. 

1988, Costa et al. 1989, Doidge and Croxall 1989, Wanless et al. 1995).  A number of these 

species exhibit individually variable foraging strategies, including herring gulls (Pierotti and 

Annett 1991), northern fur seals (Gentry et al. 1986, Loughlin et al. 1987, Costa 1988) and 

sea otters (Estes et al. 2003b).   

Sea otters provide a particularly good model for investigating variation in foraging 

behavior because their distribution is limited to the near-shore marine habitat where they are 

easily observed and they bring all captured prey to the surface to handle and consume: it is 

thus possible to study their diet and foraging behavior non-invasively through observational 

studies (e.g. Estes et al. 1981, Kvitek et al. 1993, Doroff and Degange 1994, Mathews 1996, 

Jolly 1997).  Sea otters also utilize a variety of different habitat types, and occur at varying 

population densities throughout their range, facilitating comparative studies of the effects of 

habitat and population status on foraging behavior (Estes et al. 1982, Estes 1990, Dean et al. 

2002).  The southern sea otter (Enhydra lutris nereis) feeds entirely on sub-tidal and inter-

tidal invertebrates (Riedman and Estes 1990) and previous studies have documented a highly 
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diverse and individually variable diet (e.g. Ostfeld 1982, Kvitek and Oliver 1988, Lyons 

1991, Estes et al. 2003b).  Sea otters have high metabolic rates and can consume 25% or 

more of their own body weight each day (Costa 1978) resulting a tendency to limit the 

abundance of their primary prey populations, a trait which has important consequences for 

community structure (Estes and Palmisano 1974, Estes et al. 1982).  Foraging effort has been 

found to increase and energy acquisition rates decrease as sea otter populations reach 

equilibrium densities (Estes et al. 1982, Estes et al. 1986, Garshelis et al. 1986, Watt et al. 

2000, Dean et al. 2002, Gelatt et al. 2002).   

I investigated the diet and foraging behavior of southern sea otters in central 

California in order to characterize patterns of variation and evaluate the implications for 

individual fitness.  I collected longitudinal, observational data from marked study animals 

over a 3 year period at two locations.  Otter densities were relatively high and temporally 

stable (or decreasing slightly) at both locations, although the factors limiting population 

growth are unclear (Estes et al. 2003a).  My objectives were threefold: first, I sought to 

measure the degree of individual specialization in diet, to determine whether there are 

consistent and distinct modes of prey selection and foraging behavior in southern sea otters 

and, if so, whether these strategies vary spatially or between sex classes.  Evidence from a 

prior long-term study of sea otters in Monterey Bay indicated a high degree of individual 

variation in diet (Estes et al. 2003b), but it is not clear whether this variation corresponded to 

distinct foraging modes.  My second goal was to measure variation in the rate of energy gain 

for individual otters, examine the relationship between foraging success and individual 

fitness, and evaluate the hypothesis that otters are food-limited in the center of their range.  

Finally, I wished to describe the interrelationships between foraging strategy and foraging 
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success.  Specifically, I sought to compare the rate of energy gain between different 

strategies and evaluate the fitness surface formed by plotting energy gain as a function of 

foraging behavior.  Evidence for correlational selection on foraging behavior would be 

indicated by multiple peaks in the surface, and by interactive effects of behavioral variables 

on foraging success (Sinervo and Svensson 2002). 
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Methods 

Data Collection 

All foraging data were collected between January 2001 and April 2004 from sea 

otters that were tagged and instrumented with radio transmitters as part of an ongoing 

population study of the southern sea otter (see Chapter 1).  Sea otters were captured at three 

locations: Pt. Conception, (the southern periphery of the current range of the southern sea 

otter), San Simeon/Cambria (the south-central portion of the range), and Monterey Peninsula 

(the north-central portion of the range).  Because very few foraging observations were 

obtained from animals at Pt. Conception, I limit consideration here to the latter two 

locations, referred to henceforth as Site 1 (San Simeon) and Site 2 (Monterey; Figure 2.1).   

Capture and tagging activities were conducted intermittently throughout the study 

period, resulting in a gradually increasing sample size (Table 2.1).  Study animals were 

captured by scuba divers using re-breather equipment and “Wilson Traps” (McCleneghan 

and Ames 1976).  Captured animals were transported to a shore-based veterinary mobile 

laboratory where they were immobilized using standard anesthetic techniques (Monson et al. 

2001), equipped with flipper tags (using unique tag-color combinations for visual 

identification at distance) and instrumented with an abdominally-implanted VHF transmitter 

(Williams and Siniff 1983).  A series of standardized measurements were collected, 

including weight, length, girth, tooth condition and age estimate.  Otters were revived post-

surgery using a reversal agent (Monson et al. 2001), transported back to their capture 

location and released.  A total of 117 sea otters were captured and instrumented as part of the 

larger population study, but many of these animals died or moved to inaccessible regions 

along the coast before adequate samples of foraging data could be collected.  Consequently, 
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I restrict all analyses to the 60 animals from which a reasonable quantity of foraging data 

(≥10 foraging bouts and ≥ 300 feeding dives per animal) were collected (Table 2.1).   

I systematically collected observational foraging data from tagged and instrumented 

otters using standard protocols (Ralls et al. 1995, Watt et al. 2000, Estes et al. 2003b).  Field 

observations were collected 3-7 days per week throughout the study period, and two 

sampling methods were used.  The first method involved teams of 1–2 observers making 

systematic searches of the study areas and sequentially targeting specific animals for 

foraging observations.  The second method involved 24-hour, focal-animal observations of a 

single study animal, during which time all foraging behavior was recorded.  The 24-hour 

sessions also allowed me to quantify individual activity budgets, in particular the percent of 

time spent feeding (Ralls and Siniff 1990).  In both sampling methods, otters were initially 

located by radio signal using standard telemetric techniques and then visually monitored 

them from shore using a 30× spotting scope (Questar Inc., Isanti, MN).  Foraging bouts 

(defined as unbroken sequences of feeding dives) typically lasted 1-4 hours, and data were 

recorded throughout the entire bout or for as many dives as possible.  The information 

recorded included date and time, precise location of each dive (determined by visual 

triangulation using GPS, compass and laser range-finder), duration of the subsurface dive 

interval (“ DT”) and the post-dive surface interval (“ST”) for each feeding dive (in seconds), 

success of each dive (i.e. whether or not prey was captured), species of prey captured, 

number and size of prey items, handling time per prey item, tool use, and ambient conditions 

(including sea-state, wind, etc.).  Prey size was recorded as the estimated diameter of the 

shell or maximum body dimension (excluding appendages), categorized into 5cm size-

classes.  For many observations, prey could not be identified to species; in such cases we 
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classified prey to the lowest possible taxonomic unit, and I listed as “unknown” any prey 

items that could not be reliably categorized.  Any prey items that were stolen by or from the 

focal animal were also recorded (and in the case of females with dependant pups, the number 

of items that were shared with the pups).  

Foraging bouts represent the smallest functional sampling unit for statistical 

analyses: all data were collected on a per-dive basis, but then tallied to derive per-bout 

measurements (mean dive/surface durations, success rate, frequency of prey types, etc.).  

Every attempt was made to achieve balanced sample sizes for each study animal in all 

seasons and throughout each animal’s particular home range.  The 24-hour, focal-animal 

sessions helped account for potential biases due to time of day or feeding location, because 

the focal animal was followed throughout its daily movements during these sessions.  A few 

study animals tended to spend considerable time feeding far from shore, or in areas that were 

difficult or impossible to view from shore (e.g. private property): in order to avoid bias due 

to feeding location, I augmented the shore-based observations for these animals with boat-

based observations, using a 17 foot skiff.  In the case of boat-based observations I used 12× 

image-stabilized binoculars to view the otters, but all other methods were identical to shore-

based observations.   

Data Analysis 

I calculated two indices of diet composition: the relative frequency of occurrence of 

each prey type, and the biomass contribution of each prey type to the diet.  The first index 

was calculated as the proportion of all recorded prey captures comprised by each prey type, 

and provided a measure of the likelihood of observing a particular prey species at a given 

place and time.  I used this index to evaluate spatial and temporal differences in diet 
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composition at the level of the population.  To evaluate seasonal variation, I tested for an 

interaction between month and prey type.  To evaluate spatial variation I tested for an 

interaction between study site and prey type.  In both cases a chi-square contingency test was 

used to assess the significance of the interaction.   

The second index of diet composition, prevalence of each prey type by biomass, 

accounts for the number of items per dive and the size of each item, as well as the frequency 

of occurrence.  The diameter of each prey item was converted into an estimate of wet edible 

biomass (m) using functional relationships between wet-weight and diameter from the 

literature (see Appendix D).  For each successful dive that was observed (j=1,2…J), let ni,j 

and mi,j represent the number of items and the per-item biomass, respectively, for prey of 

type i (ni,j = mi,j = 0 for all prey types except those actually captured on dive j).  I calculated 

pi, the proportion of the diet (in terms of biomass) comprised by prey type i, as:  
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Equation 30 was solved for the population as a whole, and then separately for each study 

animal, such that pi,k represents the prevalence of prey type i in the diet of otter k.  If 

individuals do not differ significantly with respect to diet, then the diet composition of each 

individual would essentially overlap with the population-level diet (pi,k ≅ pi).  Conversely, if 

pi,k ≠ pi then individual diets must vary: this appears to be the case for sea otters, based on 

previous reports (Riedman and Estes 1990, Estes et al. 2003b).  In order to measure the 

degree of individual specialization in the current sample, I calculated a “proportional 

similarity” index (PSk) for each otter:  
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PSk is the individual-equivalent to community measures of niche width (Feinsinger et al. 

1981): PSk will approach 1 for a dietary generalist, while values of PSk < 1 indicate 

specialization on a sub-set of the population diet (Bolnick et al. 2002).  I averaged PSk across 

all individuals to calculate PSI, the proportional similarity index of the population: PSI 

represents a measure of the degree of specialization in the population as a whole.  I 

contrasted PSI between study sites using single factor ANOVA.    

The PSI value indicates the degree of individual specialization, but fails to describe 

the nature of the variation in individual diets.  For a hypothetical population in which PSI = 

0.5, we know that the diet of a typical individual overlaps with the population diet by only 

50%; however, we do not know if each individual has a unique dietary configuration, or if 

there are just a few alternate dietary configurations distributed evenly among individuals.  

Previous reports of specialization in sea otters do not describe consistent dietary modes 

(Lyons 1991, Estes et al. 2003b), but these were based on smaller sample sizes and were not 

specifically testing for such patterns.  In order to distinguish between the two alternate 

scenarios of individual variation described above, I used a combination of cluster analysis 

and discriminant analysis to test for consistent, distinct categories of diet composition.   

To simplify interpretation of results, I combined similar prey species together to 

form 13 exhaustive prey categories (Table 2.2).  The raw data analyzed were pi,k, the 

prevalence (by mass) of prey type i in the diet of individual k: thus individual otters 

represent sample units (N = 60) and diet types represent the variables of interest.  I used 

hierarchical cluster analysis to detect discontinuous groupings or “clumps” of data points in 
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multidimensional space (McGarigal et al. 2000).  The distance measure used was the square 

of the Pearson product-moment correlation (r2), as this measure maximized the cophenetic 

correlation coefficient and thus most faithfully represented the structure of the raw data 

(Gauch 1982).  I used Wards minimum variance method to link similar points, and the 

number of significant clusters was determined by graphical examination of the resulting 

dendrogram and scree plot of inter-cluster distance vs. number of clusters (McGarigal et al. 

2000).  After classifying each otter by cluster membership, I used discriminant analysis to 

evaluate the effectiveness of the classification (the frequency with which otters were 

correctly assigned cluster membership, using a “jack-knife” re-sampling test procedure) and 

to determine the key prey variables that contributed most to the classification.  Assuming 

that distinct clusters could be identified, they were described in terms of the relative 

frequency of key prey types.  I compared PSI values among diet types using single-factor 

ANOVA, to determine whether the degree of prey specialization differed between diet types.  

I used a log-linear model to evaluate the interactions between diet type, study site and sex, 

testing the null hypothesis that diet types were equally distributed among sexes and study 

sites.  The best-fit model was selected by minimizing the Bayesian Information Criterion, or 

BIC (Hilborn and Mangel 1997). 

Differences in diet composition could potentially be associated with differences in 

the diving and feeding behavior of alternative specialists.  However, evaluating trends in 

diving/feeding behavior is complicated by the large number of behavioral variables that were 

measured.  I used principal components analysis (PCA) to reduce the number of variables 

needed to describe behavior: this analysis collapsed many behavioral variables into a few 

dominant, orthogonal axes that were used for further tests.  Individual otters were used as 



 78

sample units, and the variables of interest were mean DT, mean ST, variation in ST, dive 

success rate (the proportion of dives in which prey were captured), the “surface duration 

ratio” or SDR (defined as the ratio of ST for successful dives: ST for unsuccessful dives), the 

average number of prey items captured on a successful dive, and the mean handling time 

required per prey item.  The principal component eigenvalues were converted to estimates of 

relative percent variance, and I retained the sub-set of factors explaining at least 80% of the 

variation in the data.  These factors were then interpreted based on the component loadings 

of the underlying variables (McGarigal et al. 2000).   

I analyzed patterns of variation in the PCA factor scores to test for differences in 

foraging behavior attributable to study site, sex, and diet type.  I used mixed-model ANOVA 

to test the significance of main effects (sex was treated as a fixed effect, study site and diet 

type were treated as random effects) and interactions (sex–diet type and study site–diet 

type).   I repeated the analysis for each PCA factor, and used Bonferoni-adjusted 

probabilities (Padj) to account for the increased type-I error rate due to multiple tests.  I also 

wished to compare the relative proportion of variation in behavior that was explained by 

differences between diet types, differences between individuals, and within-individual 

variation.  Accordingly, I repeated the PCA analysis described above, but used individual 

foraging bouts as the sample unit.  I then used random-effects, nested ANOVA to measure 

variation associated with diet type, individuals (nested within diet types) and foraging bouts 

(within-individual variation).  Variance components were calculated using standard methods 

(Neter et al. 1990), and the analysis was repeated for each PCA factor.  Estimates of percent 

variance explained were then calculated as the weighted means of the variance components 

for all PCA factors, using the factor eigenvalues as a weighting variable.   
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I used energy acquisition rate as an index of foraging success, and as with previous 

analyses of sea otter prey consumption rates (Ebert 1968, Costa 1978, Garshelis et al. 1986, 

Doroff and Degange 1994, Mathews 1996, Jolly 1997, Dean et al. 2002) I estimated the rate 

of energy gain based on observational foraging data.  The simplest and most commonly used 

method for estimating the rate of energy gain is to calculate, for each prey type, the product 

of the following four variables: 1) dive success rate (excluding dives of unknown success); 

2) the proportion of successful dives in which the prey type was observed (excluding dives 

with unknown prey types); 3) the mean number of items of the prey type captured per dive; 

and 4) the mean energy content per prey item.  This product is summed for all prey types in 

the individual’s diet, and then divided by the average dive interval (DT + ST) to estimate the 

mean energy acquisition rate.  Although this approach can provide a reasonable estimate of 

the long-term average rate of energy gain, there are two potential problems: first, it provides 

no indication of the degree of variation in the rate of energy gain.  The long-term average 

may not provide a good measure of day-to-day success if the rate of energy gain varies 

greatly from bout-to-bout, or is not distributed as a normal variable (e.g. the distribution is 

skewed or multimodal).  The second problem is one of bias: potentially important sources of 

uncertainty in the raw data – dives of unknown success, dives with unknown or 

unrecognized prey types, dives with unknown numbers of prey items – are simply ignored 

under the assumption (generally untested) that unrecorded data points are well represented 

by recorded data points.  Violations of this assumption could have significant impacts on the 

resulting estimates, however, because dive outcome is unknown for many dives and 

approximately 50–60% of recorded prey captures fall into the “unidentified” category (an 

unavoidable consequence of observing otters feeding on small prey at great distances).  
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There are in fact a number of reasons to doubt the assumption that recorded data is an 

unbiased sample of unrecorded data: large prey species are easier to identify at distance and 

thus more likely to be recorded than smaller species; prey types captured on dives with short 

surface intervals are less likely to be recorded (such dives are often associated with small 

prey items); and dive success is less likely to be confirmed on dives with short surface 

intervals.  These biases could potentially skew results, though not necessarily in predictable 

ways.   

Both of the problems described above can be addressed by an alternative approach 

that directly incorporates uncertainty into the analysis.  Dean et al. (2002) used a Monte 

Carlo re-sampling analysis to create large numbers of “simulated foraging bouts”, using 

summary statistics from the raw data to parameterize each simulation.  Their model did 

allow for stochastic variation in the rate of energy gain, but did not directly address the 

potential biases associated with unrecorded data.  Here I develop a slightly different re-

sampling model to analyze foraging success (rate of energy gain), explicitly accounting for 

uncertainty and potential biases, but using the actual data for analysis rather than 

simulations.  The general approach is to “boot-strap” foraging bouts (draw bouts randomly 

with replacement) from the database for each animal, and then calculate energy gain on a 

dive-by-dive basis for each bout.  The energy gain is summed for all the dives in the bout 

and then divided by the total bout duration to create an estimate of net rate of energy gain 

(kJ⋅min.–1).  In the case of dives with no missing information, the calculations are 

straightforward: the energy content of each captured prey item is estimated using species-

specific, size-energy relationships (see Appendix D) and summed for the number of items of 

each prey type (net energy gain = 0 for unsuccessful dives).  Adjustments are then made for 
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prey sharing or stealing: any prey items shared with a pup or stolen by another otter are 

subtracted, while any additional prey items stolen from another otter are added.     

In the case of dives with one or more unrecorded parameters (e.g. unknown dive 

success, unknown prey, or unknown number of items), an appropriate estimate for the 

parameter in question is assigned based on the characteristics of the dive.  Because the post-

dive surface interval (ST) is strongly correlated with dive success rate and the number/size 

of prey items, this information can be used to restrict the range of possible values for each 

unrecorded parameter.  For example, dive outcome can be modeled as a binomial variable 

(successful = 1, unsuccessful= 0) that is a function of ST: the probability of dive success is 

low for dives with small ST values and high for dives with long ST values.  Accordingly, for 

each individual otter a logit function is fit to dives with known outcome (Figure 2.2), and 

this function is used to estimate the probability of success for all dives with unknown 

outcome.  In the case of successful dives where the prey type is known but the number of 

items or size of prey is unrecorded, an appropriate value is drawn (with replacement) from 

the observed distributions of size class and number of items.  These distributions are specific 

to each prey type and individual otter, and stratified by ST (short ST < 45s; medium ST ≥ 

45s and < 90s; long ST ≥ 90s; this classification scheme was somewhat arbitrarily, but 

provided adequate sample sizes for short, medium and long surface intervals).  Finally, in the 

case of successful dives where the prey type is unknown, the net energy gain for the dive is 

assigned as a random deviate from a log-normal probability distribution calculated 

separately for each otter and fit to the vector of estimated energy gain for successful dives 

with known prey types, stratified by ST.  
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The boot-strap analysis described above was repeated 1000 times for each 

individual, to create distributions of the mean rate of energy gain (kJ per minute) and 

between-bout variance in the rate of energy gain.  Because the model required a large 

database of forage data for each individual (in order to properly parameterize the various 

distributions), I restricted the analyses to a sub-set of the study animals for which at least 15 

feeding bouts of ≥ 20 dives had been recorded.  This resulted in a sample size of 39 

individual otters (26 from site 1 and 13 from site 2) and a total of 629 foraging bouts 

consisting of 30,992 recorded dives.  Two sets of analyses were conducted for adult females, 

one for foraging bouts recorded when the female was without a pup and one for foraging 

bouts recorded when the female had a dependant pup.  A paired Wilcoxin signed-ranks test 

was used to compare the rate of energy gain for females with vs. without a pup.  The mean 

rate of energy gain and variance in the rate of energy gain were contrasted between study 

sites and diet types using two-way ANOVA.  Individual rates of energy gain were found to 

be log-normally distributed, so all statistics were calculated using log-transformed values 

(therefore all contrasts made are for the geometric mean rate of energy gain).   

When the average rate of energy gain during foraging bouts decreases in a 

population, the required foraging effort of individual otters (measured as the percent of daily 

activity budget spent foraging) is predicted to increase in order to meet basic metabolic 

maintenance requirements (Estes et al. 1986, Ralls and Siniff 1990, Gelatt et al. 2002).  I 

calculated expected foraging effort based on the observed body weight and estimated rate of 

energy acquisition for each individual.  I assumed that mean daily maintenance requirements 

were 1019 kJ⋅kg-1⋅day-1, the average of several published values for sea otters (Costa 1978, 

Costa and Kooyman 1982, Dean et al. 2002).  I calculated the required total daily energy 
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input, and divided this by the estimated rate of energy gain to obtain the expected time 

budget.  I compared the mean expected foraging effort for females (without pups) to 

observed activity budgets, as recorded during 24-hour focal-animal sessions (N= 25), using a 

two-sample t-test.   

It is generally assumed that foraging success (rate of energy gain while foraging) is 

important to individual survival or reproductive success; however, this is a difficult 

relationship to test directly because of the difficulty of measuring lifetime fitness in long-

lived animals such as sea otters.  Poor body condition in sea otters, indicated by a low ratio 

of body weight to total length, has been found to be associated with increased mortality 

(Bodkin et al. 2000) and lower reproductive success (Monson et al. 2000), thus body 

condition can be used as an indirect measure of fitness.  I evaluated the importance of 

foraging success to individual fitness by examining the relationship between rate of energy 

gain and female body condition.  First, I fitted a locally-weighted, least-squares regression to 

log-weight vs. log-length (LOWESS smoothing has the effect of relaxing assumptions of 

log-linearity: Green 2001), and used the residuals from this allometric relationship as an 

index of relative body condition (Silva 1998, Green 2001).  I then used least-squares, linear 

regression analysis to test the relationship between body condition and the rate of energy 

gain while foraging (rate of energy gain was log-transformed to achieve normality). 

To visualize the relationship between foraging success (net energy gain) and 

foraging behavior, I used Schluter and Nychka’s (1994) multivariate cubic spline algorithm 

to fit a “fitness” surface to the principal axes of behavior.  The multivariate cubic spline is a 

non-parametric regression technique that finds the best-fit function between a dependent 
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variable and 2 or more independent variables.  In this case the dependant variable was the 

standardized net rate of energy gain (wi) for each otter, i: 

 
E
Ew i

i=    32 

where E is the geometric mean rate of energy gain while foraging, minus the expected rate of 

energy expenditure (assuming standard field metabolic rate: Costa 1978).  The independent 

variables were the first two principle components of behavior (calculated using PCA: see 

above), with scores standardized to mean of 0 and unit variance for the sub-set of 39 study 

animals for which rate of energy gain was estimated.  The best-fit spline function (visualized 

as a 3-dimensional surface) is found by adjusting the smoothing factor (λ) to minimize the 

GCV score (Craven and Wahba 1978).  Correlational (and disruptive) selection is suggested 

if the resulting surface curvature results in multiple peaks (Schluter and Nychka 1994).  I 

also used a general linear model to test for an interaction effect between the two axes of 

behavior.  In the case of a significant interaction, I estimated the correlational selection 

gradient (γ) from the magnitude of the interaction coefficient (Endler 1986, Sinervo and 

Svensson 2002).   

 The type-1 error rate (α) was set to 0.05 for statistical tests, and all results are 

reported with appropriate test statistics and P values.  In the case of non-significant test 

results, the power of the test to detect a “large effect” (sensu Cohen 1988), given the existing 

sample size and variance structure, is also reported (where power is defined as 1–β, the type-

II error rate).  Whenever appropriate, statistics are followed (in parentheses) by ± 1 standard 

deviation. 
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Results 

Based on approximately 38,500 recorded prey captures between January 2001 and 

April 2004, the diet of southern sea otters consisted of 24 identifiable prey types (Table 2.2).  

All 24 prey types were observed at both study sites, but the relative frequency of occurrence 

differed significantly (χ2 = 255.6, d.f. = 23, P <0.001): crabs and clams occurred more 

frequently at site 1, while snails, urchins and mussels were more commonly observed at site 

2.  Diet composition also varied seasonally (χ2 = 260.9, d.f. = 132, P <0.001), although no 

prevailing patterns could be discerned: rather, there were distinct seasonal peaks in 

occurrence whose timing differed between prey types (Figure 2.3).  Many prey types were 

observed on a relatively small percentage of feeding dives, and approximately 80% of the 

diet at both sites consisted of the same 6 prey types (Table 2.2).   

Individual otters had much more specialized diets, with 80% of the diet of a typical 

study animal consisting of only 3 prey types.  This difference between individual- and 

population-level diets was reflected in a mean PSI score of 0.54 (Table 2.3).  The PSI score 

at site 2 (0.49) was slightly lower than site 1 (0.57), although this difference was not 

statistically significant (Table 2.3).  The low PSI scores indicate a high degree of variation in 

diet between individuals; however, cluster analysis suggested that individuals could be 

classified into three distinct groups based on the prevalence of prey types (Figure 2.4).  

Individual otters were easily partitioned into the three diet groupings by discriminant 

analysis (Figure 2.5), and jack-knife re-sampling of the data resulted in correct group 

assignment 93% of the time (Appendix E).  The prey types that contributed most to 

discrimination of the groupings were cancer crabs, abalone, clams, worms (primarily fat 
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innkeeper worms, Urechis caupo), mussels and turban snails.  Diet type 1 was characterized 

by large prey such as crab and abalone, type 2 was comprised of small to intermediate size 

prey (particularly clams, mussels and worms) and type 3 consisted almost entirely of snails 

(Figure 2.6). The PSI scores differed between diet types (Table 2.3), with type 1 specialists 

having the highest overlap with the population diet and type 3 showing the greatest degree of 

specialization.  The most frequently observed specialization was type 2 (57% of study 

animals), followed by type 1 (33%) and then by type 3 (10%).  There was little support for 

differences in the relative frequency of the three diet types between study sites, or between 

males and females (the log-linear model providing the best fit to the data included neither 

interaction term, BIC = –15).   

Principle Component Analysis indicated that 87% of the individual variation in dive 

behavior could be explained by 3 factors (Appendix F).  The first factor explained 40% of 

the total variance, and was most closely associated with prey handling time, ST variation and 

the dive success rate (frequency of successful dives).  The second factor explained 26% of 

the variance, and was most closely related to the number of items captured per dive and 

SDR.  The only variable to load heavily on the third factor was dive duration (Appendix F).   

The ordination of individual otters on factors 1 and 2 showed that differences 

between the three diet types accounted for much of the variation in these two axes of 

behavior (Figure 2.7).  Individual scores on Factor 1 and 2 differed significantly between 

diet types (Factor 1 F=4.35, Padj=0.044; Factor 2 F=9.25, Padj=0.037), but not between sexes 

(Factor 1 F=0.53, Padj=0.849; Factor 2 F=0.31, Padj=0.607, power = 0.86) or study sites 

(Factor 1 F=0.03, Padj=0.994; Factor 2 F=1.64, Padj=0.508, power = 0.86).  I was unable to 

detect significant differences in Factor 3 between diet types (F=0.306, Padj=0.965, power = 
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0.77), sexes (F=0.756, Padj=0.708, power = 0.86) or study sites (F=3.284, Padj=0.179, power 

= 0.86).  Foraging behavior varied considerably between foraging bouts, even those recorded 

for a single study animal: within-animal variation in foraging behavior accounted for 49% of 

the combined variance of the three principal components.  Of the remaining variance, a 

higher proportion (29%) was explained by differences between specialist types than was 

explained by individual variation within specialist types (22%).   

The estimated mean rate of energy gain while foraging for all animals in the current 

study was 29.4 kJ⋅min-1, but this rate varied between individuals and also showed 

considerable variation from bout-to-bout (within-individual variance; Table 2.4).   The mean 

rate of energy gain was slightly higher for animals at site 2 (F = 4.15, P = 0.049), and there 

were differences between the three diet specializations (F = 12.63, P <0.001).  Type 1 

specialists had a higher rate of energy gain than type 2 and type 3 specialists (Table 2.4), but 

also tended to have higher within-individual variance (the difference was significant for 

females with large pups, F = 5.70, P = 0.013, but not for females without pups, F = 2.32, P = 

0.113, power = 0.48).  The reproductive status of females did not affect the mean rate of 

energy gain (Z = -0.67, P = 0.501, power = 0.43) but did affect the variance: females with 

large pups experienced less bout-to-bout variation in foraging success (Z = -3.21, P = 0.001).  

Within-individual variance in foraging success could have important consequences for 

individual fitness: for example, despite the substantial differences between specialist types in 

the mean rate of energy gain, type 2 specialists had about the same probability of exceeding 

a critical rate of energy gain (on any given bout) as type 1 individuals (Figure 2.8). 

The estimated rate of energy gain while foraging was a good predictor of female 

body condition (Figure 2.9), consistent with the hypothesized relationship between foraging 
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success and individual fitness.  Based on the estimated energy requirements for maintenance 

metabolism, I estimated that female study animals (without pups) would need to spend 

42.3% (±15.78) of their time foraging.  This estimated foraging effort closely matched the 

time-activity budgets collected from study animals, which indicated that females spent an 

average of 41.9 % (±15.43) of their time foraging (Figure 2.10). 

The fitness surface created by plotting the net rate of energy gain (wi) as a function 

of foraging behavior took the shape of a saddle, with two peaks separated by a deep trough: 

the highest peak corresponded to type 1 specialization, while the second, slightly lower peak 

corresponded to type 3 specialization (Figure 2.11).  A general linear model fit to the data 

showed that the first two principal components of behavior accounted for a significant 

amount of variation in the net rate of energy gain (R2 = 0.374, P = 0.001).  There was a 

significant interaction between these two primary axes of behavior (P = 0.038), indicating a 

substantial correlational selection gradient (γ = 0.593).   
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Discussion 

The data reported here demonstrate that southern sea otters have a diverse and 

variable diet, a finding consistent with previous studies (Ostfeld 1982, Faurot et al. 1986, 

Kvitek and Oliver 1988, Ralls et al. 1995, Estes et al. 2003b).  Six prey categories – kelp 

crabs, cancer crabs, urchins, turban snails, clams and mussels – comprised approximately 

80% of the diet at both study sites, although the order of importance differed (Table 2.2).  

The spatial differences in prey frequency could reflect different abundances of prey species 

between the sites, but may also reflect sampling error: because of high degree of individual 

dietary variation, some differences are to be expected simply based on the frequency of 

specialists of each type included in the sample.  Interestingly, this same suite of prey types, 

with the exception of clams, were predominant in the diet of sea otters studied 20 years ago 

(Estes et al. 2003b), and 30 years ago (Costa 1978) at Monterey Peninsula.  At the level of 

the population this indicates a fairly consistent diet composition over time, with one notable 

exception: abalone occurred on a substantially higher proportion of feeding dives in the 

previous studies (Costa 1978, Estes et al. 2003b).  Seasonal trends in diet composition 

observed in the current study (Figure 2.3) probably correspond to temporal changes in local 

abundance for some prey types such as crabs (Carroll 1982), while for other species the 

relative importance in the diet may increase as a function of seasonal changes in energetic 

content, associated with reproduction and gonad development (J. Pearse, pers. comm.).  A 

similar phenomenon has been reported for Alaskan sea otters, with respect to seasonal 

variation in urchin consumption (Watt et al. 2000), and is likely to occur for a variety of prey 

species. 
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In contrast to the diverse population diet, individuals tended to specialize on a much 

smaller suite of prey species.  Only 3 prey types comprised 80% or more of the diet for a 

typical individual, reflecting a mean niche overlap of only 50% between individuals and the 

population as a whole (Table 2.3).  This represents a relatively high degree of individual 

specialization (Bolnick et al. 2003), well within the range reported for other highly 

specialized foragers such as Cocos Island finches (Werner and Sherry 1987) and snails of the 

genus Nucella (West 1986, 1988).  Although previous research has clearly shown that 

individual variation in diet is typical of this sea otter population (Ostfeld 1982, Lyons 1991, 

Estes et al. 2003b), it appears that the degree of specialization has actually increased since 

the 1980s (Table 2.3).  Individual specialization is expected to become more pronounced as 

the degree of intra-specific competition intensifies (Glasser 1982), and the increased 

specialization seen here may be associated with less abundant food resources (Schindler et 

al. 1997).   

Dietary variation among individuals was not random, but was clearly grouped into 

three distinct diet specialization types (Figure 2.4 and Figure 2.5).  It should be emphasized 

that the dietary characterizations of each diet type (Figure 2.6) are based on relative 

importance only, and do not indicate inflexible rules of prey selection.  Almost all of the 

study animals were observed to capture at least 10 different prey types over the three year 

study period; however, only a few species comprised the bulk of the diet for each individual.  

Two prey species that were relatively common among all diet types were kelp crabs and 

urchins: because of their ubiquity, these prey types contributed very little to the discriminant 

analysis (Appendix E).  However, although kelp crabs and urchins occurred on a relatively 

high percentage of recorded foraging dives (Table 2.2), their contribution to the population 
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diet on a per-mass basis was much less, due to the small size of each prey item (Ebert 1968, 

Costa 1978, Mathews 1996).  It is also important to note that the relative frequencies of prey 

species within each diet type varied somewhat from animal to animal: for example, some 

type 2 specialists preyed mostly on mussels and urchins, while others consumed mostly 

clams, worms and other sand-bottom infauna (e.g. sand dollars, mole crabs).  Indeed, the 

cluster analysis dendrogram suggests that further divisions of the main groupings could 

certainly be made (Figure 2.4); however, based on the distribution of inter-cluster distances 

and on the unequivocal results of the discriminant analysis (Figure 2.5), I believe the three 

groups I have identified provide the most generalized and robust approximation to the data.   

Variation in the foraging behavior of sea otters, as described by a variety of 

measurable characteristics of feeding dives, was well explained by three orthogonal axes: 

these axes could be conceptualized as dive efficiency, effort allocation (the ratio of prey 

handling effort to prey acquisition effort) and total dive duration (the latter is actually a 

proxy measurement for dive depth, because these two variables are closely linked; USGS, 

unpublished data).  Although these axes were derived independently of prey species identity, 

they nonetheless were closely related to diet composition, such that the three dietary 

specializations could be described by their location along the first two behavioral axes 

(Figure 2.7).  Type 1 specialists, which preyed on large, energy-rich prey types such as 

cancer crabs and abalone, were characterized by low dive efficiency (low success rate, few 

prey items per successful dive, long handling time per prey item, and highly variable dive 

and surface intervals) and a low to intermediate ratio of handling effort to acquisition effort.  

Type 2 specialists, which preyed on small or intermediate-sized prey such as clams, mussels 

and inn-keeper worms, were characterized by high dive efficiency but a low ratio of 



 92

handling effort to acquisition effort (i.e. more time was devoted to acquiring prey from the 

bottom than to handling at surface).  Type 3 specialists, which preyed almost entirely on 

turban snails, were characterized by very high dive efficiency and a high ratio of handling 

effort to acquisition effort.  Clear differences in feeding behavior (along the first two axes) 

were found between the three diet types, suggesting that each combination of diet and 

feeding behavior represents a distinct foraging strategy.  Although considerable variation in 

foraging behavior was attributable to within-individual variation (almost half of the observed 

variance), approximately two thirds of the between-individual variation was explained by 

differences between specialist types.  

The relatively even distribution of foraging strategies across study sites and among 

males and females was interesting, and suggests that mechanisms responsible for 

maintaining alternate strategies within the population are consistent across space, and apply 

equally to males and females.  Because all study animals included in this analysis were 

adults, it is impossible to determine at this point whether there is any relationship between 

age-class and foraging strategy: however, based on anecdotal observations of tagged juvenile 

otters that were not included in this analysis, it appears likely that all three strategies occur 

among immature animals as well as adults.   

The estimated rate of energy gain during foraging bouts varied greatly, both between 

and within individuals (Table 2.4).  Averaging across all study animals, the prey 

consumption rate was lower than values previously reported for this population (Costa 1978, 

Mathews 1996, Jolly 1997), and also low compared to values reported for sea otter 

populations in Alaska (Garshelis et al. 1986, Doroff and Degange 1994, Dean et al. 2002).  

The only comparably low prey consumption rate reported in the literature was measured at 
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Green Island in Prince William Sound, Alaska, in a population that was considered to be 

food-limited at the time of study (Garshelis et al. 1986).  It is likely that differences in the 

reported rates of energy acquisition to some extent reflect the different methodologies used 

to collect observational data and estimate foraging success.  An important potential source of 

error is the database of energy content values used in the computation of the estimate, which 

in my analysis was derived from the published literature (Appendix D).  Ideally the energy 

content values would be measured from prey items of each species and size class collected 

from the actual study sites, to properly account for spatial and seasonal variation.  

Nonetheless, given the concordance between the predicted foraging effort and the observed 

activity budgets (Figure 2.10) it is reasonable to conclude that the rates of energy gain 

estimated here were not overly biased, and truly reflect a relatively low rate of foraging 

success.  The fact that foraging success is important to individual fitness is demonstrated by 

the relationship between rate of energy gain and female body condition (Figure 2.9).  The 

weight/length residuals were, without exception, negative for females whose rate of energy 

gain was below 20 kJ⋅min-1: interestingly, this value closely matches the predicted 

maintenance requirement of 19.6 kJ⋅min-1 for an 18 kg female (the average weight of 

females in this study) that foraged for 65% of the time (the maximum foraging effort 

recorded during 24-hour focal-animal sessions).     

A great deal of the individual variation in the rate of energy acquisition was 

explained by differences in foraging strategy (Table 2.4).  Type 1 specialists had the highest 

mean foraging success rate overall, but variation between individuals was much higher than 

the other two strategies, as was within-individual (between-bout) variance.  Specializing on 

crabs, abalone and other large prey types clearly has the highest potential pay-off in this 
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population, but it is also a much riskier strategy than specializing on smaller, more abundant 

prey.  When the relationship between fitness and forage success is non-linear, as is the case 

for many species, it is necessary to consider the variance as well as the mean rate of energy 

gain because, under certain circumstances, individuals are expected to choose a less risky 

strategy (lower variance) over one with a higher mean pay-off (Real and Caraco 1986, 

McNamara and Houston 1992, Kacelnik and Bateson 1996).   High-variance strategies are 

likely to be avoided when an individual’s expected success rate exceeds some critical value 

(i.e. the value needed to reproduce or survive), and failure to exceed the critical value is 

associated with costs outweighing the potential benefits of achieving a higher mean (Caraco 

and Gillespie 1986, Gillespie and Caraco 1987, Barkan 1990).  For female sea otters, 

successfully rearing a pup requires a substantial investment of resources, and during 

lactation females likely exhaust whatever reserves they have stored prior to parturition 

(Monson et al. 2000).  Failure to regularly meet the basic energy requirements for 

maintenance at this stage is likely to result in the loss of the pup or, at the extreme, female 

mortality.  Foraging success will thus be under particularly intense selection during the latter 

stages of lactation, and there may be a selective trade-off between maximizing the mean rate 

of energy return and minimizing the variance.  Probability density functions corresponding 

to the observed mean and variance in foraging success for each strategy show that, despite 

the higher mean success rate of type 1 specialists, the likelihood of failing to meet a critical 

rate of energy gain on any given foraging bout is almost identical for type 1 and type 2 

specialists (Figure 2.8).  This trade-off between mean and variance in the rate of energy gain 

may to some extent balance the relative benefits of the different strategies. 
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The adaptive landscape formed by plotting rate of energy gain against foraging 

behavior illustrates another reason that distinct foraging strategies can coexist within this 

population: there are at least two local fitness maxima (i.e. local peaks in foraging success; 

Figure 2.11).   Type 1 specialists occupy the higher peak, while type 3 specialists are 

centered on a slightly lower peak.  The low rate of energy gain achieved by individuals that 

exhibited more “generalist” behavior (i.e. their position on the ordination placed them 

between the modes associated with the three diet types) results in a deep trough between the 

two peaks.  A strong interaction between the principal axes of behavior means that these 

traits jointly determine foraging success: a combination of large prey size, low dive 

efficiency and intermediate ratio of handling/acquisition effort results in high forage success, 

as does a combination of very small prey, high dive efficiency and high ratio of 

handling/acquisition effort, but all other combinations result in low success. 

Type-2 specialization would appear to be sub-optimal, based on their position on the 

fitness surface: type 2 specialists are clustered along the “slope” leading up to the higher 

fitness peak (Figure 2.11).  This may or may not be the case: factors not included in the 

model (e.g. shorter travel time to foraging patches, etc.) could actually increase the realized 

fitness for type 2 specialists, as could a trade-off between the mean and variance in the rate 

of energy gain (see above).  Moreover, the strong correlational selection gradient suggests 

that frequency dependence is likely responsible for maintaining multiple fitness peaks 

(Sinervo and Svensson 2002).  Frequency-dependent selection is inherently dynamic, with 

alternative foraging strategies in a cyclic “game” based on prey abundance (e.g. Ehlinger 

1990, Beauchamp et al. 1997), and so at any given instant there is likely to be a “best” and 

“worst” strategy (but the locations of these optima will shift over time).  If this is the case, 
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what prevents type 2 specialists from simply switching to a more profitable strategy?  

Individual sea otters probably cannot easily switch to a different foraging strategy because of 

the difficulty of learning the skills required to efficiently capture and handle the new prey 

types (Werner et al. 1981, Estes et al. 2003b).  The time required to master new foraging 

skills would determine the magnitude of the cost (in terms of decreased energy gain) 

associated with a switch from one foraging strategy to another (see Chapter 3 of this 

dissertation, and Hughes 1979), and the cost of switching may be sufficient to “trap” 

individuals in sub-optimal strategies.  As a result of the lag created by this learning inertia, 

frequency dependent dynamics are likely quite slow for sea otters, perhaps spanning 

generations and probably mediated by cultural transmission (Estes et al. 2003b).   

Considered together, a number of lines of evidence – the increasing degree of 

individual specialization, the high percent of the activity budget devoted to foraging, and the 

generally low prey consumption rates – suggest that this population is becoming increasingly 

food-limited.  However, the considerable individual variation in diet and foraging success 

means that food-limitation does not act equally on all animals, and this has contributed to 

our difficulty in diagnosing the status of this population.  Moreover, it is very likely that 

food-limitation is interacting synergistically with other factors that negatively impact 

population growth, including abnormally high levels of infectious disease (Miller et al. 2002, 

Kreuder et al. 2003), elevated contaminant burdens (Bacon et al. 1999) and even fisheries-

related mortality (otters may be increasingly utilizing greater feeding depths and “sub-

optimal” habitats that increase their exposure to fishing activity).  More work will be 

required to fully untangle the role of food limitation in the (apparently) stalled recovery of 

the southern sea otter.  
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Tables 

Table 2.1  Sample sizes used for analyses of foraging data.  New study animals added to the 
sample each year are summarized by sex (at least one full year of data were collected for 
each animal, and for most individuals 2–3 years of data were collected, unless the animal 
died before the end of the study).   Also shown are the number of foraging bouts and feeding 
dives recorded for all study animals during each year. 
 

  Study Animals Captured Number of  Number of  
Study Site Year Females Males bouts observed dives recorded 
1. San Simeon 2001 9 3 196 10778 

 2002 18 5 209 10244 
 2003 0 0 298 12231 
 2004 0 0 24 937 
 sub-total: 27 8 727 34190 

2. Monterey 2001 5 1 25 1641 
 2002 2 0 105 4484 
 2003 14 3 113 5169 
 2004 0 0 62 2568 

 sub-total: 21 4 305 13862 

 Total: 48 12 1032 48052 
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Table 2.2. Summary of diet composition of sea otters at two study sites, showing the frequency of occurrence of prey types on foraging 
dives (prey comprising ≤ 0.1% of occurrences are not shown).  For prey that could not be identified to species, the lowest-possible 
taxonomic identification is shown.  Prey types are classified into one of 13 categories for use in multivariate analyses (see text). 

Common Name Latin Name or Taxonomic group Prey Type category % at Site 1 % at Site 2 
kelp crab Pugettia producta (and richii) kelp crab 20.05 8.40 
turban snail Tegula spp. snail 10.97 17.30 
mussel Mytilus californianus mussel 8.51 17.76 
purple urchin Strongylocentrotus purpuratus urchin 9.11 16.11 
clam, unidentified species various pelecypod species clam 14.25 10.57 
cancer crab Cancer spp. cancer crab 10.43 9.00 
crab, unidentified species various decapod species crab (un-id) 8.89 5.97 
fat innkeeper worm Urechis caupo worm 3.38 4.60 
small kelp fauna various small invertebrates other (rock) 7.20 0.22 
sea star Pisaster sp. sea star 3.94 0.82 
sand crab Emerita analoga, Blepharipoda occidentalis other (sand) 0.42 2.09 
sand dollar Dendraster excentricus other (sand) 0.91 1.58 
abalone Haliotus spp. abalone 0.54 1.94 
octopus Octopus sp. cephalapod 0.36 0.71 
worm, unidentified species various annelid species worm 0.21 0.72 
chiton Mopalia sp., Tonicella sp. other (rock) 0.07 0.58 
limpet Diodora aspera other (rock) 0.01 0.39 
scallop Hinnites multirugosus clam 0.11 0.21 
cockle Clinocardium nuttalli  clam 0.01 0.28 
gaper clam Tresus nuttalli clam 0.24 0.03 
sea cucumber various holothurian species other (rock) 0.09 0.17 
red urchin Strongylocentrotus franciscanus urchin 0.02 0.21 
squid Loligo opalescens cephalapod 0.06 0.12 
isopod various isopod species other (rock) 0.13 0.01 
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Table 2.3.  Means and standard errors of the proportional similarity index (PSI) are 
shown for various sub-groups of the population, for all animals in the current study, 
and for all animals in a similar study conducted in the 1980’s (Estes et al. 2003b). 
 

Group Mean Std. Error Result of statistical test 

Site 1 0.57 0.025 No significant difference, 
Site 2 0.49 0.036  F = 3.93, P = 0.052, power = 0.86 

 
Type 1 diet specialists 0.64 0.029 All pairwise comparisons 
Type 2 diet specialists 0.51 0.023  significant, F = 17.57, P < 0.0001 
Type 3 diet specialists 0.29 0.054  

All animals,   
 

 
  current study 0.54 0.021 Significant difference, 
  1980's study 0.68 0.032   t = 2.47, P = 0.016 
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Table 2.4.  Means and standard deviations in the estimated rate of energy acquisition while foraging (kJ⋅min-1) by sea otters.  Two 
components of variation are shown, the within-individual variance (between-bout variation) and the between-individual variance.  
Data for all study animals are summarized for each study site and for both sites combined.  Data for adult females without pups and 
for adult females with large pups are also summarized for both study sites combined, and for each of the three types of diet 
specialization (see text for details).  

           Prey specialization 
Demographic Group Parameter Site 1 Site 2 Both 

Sites 
Type 1 Type 2 Type 3 

All study animals Mean 25.6 37.2 29.4    
 within-individual σ 16.98 30.16 20.58    
 between-individual σ 11.71 17.65 14.56    

Females without pups Mean   31.1 38.8 20.5 25.2 
 within-individual σ   19.33 30.26 10.38 12.72 
 between-individual σ   15.43 17.99 7.70 4.23 

Females with large pups Mean   43.5 45.3 19.4 44.4 
 within-individual σ   9.98 26.66 1.64 4.50 
 between-individual σ   44.9 37.54 12.90 50.63 
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Figure 2.1  Map of the central California showing the current distribution of the sea otter 
(Enhydra lutris nereis) and the locations of the two study sites  
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Figure 2.2  Sample data from one study animal illustrating the relationship between dive 
outcome (score of 1 = one or more prey items captured, 0 = no prey captured) and the 
duration of the post-dive surface interval.  A logit function is fit to the data, and this function 
is then used to estimate the probability of dive success for dives in which the surface interval 
was recorded but the dive outcome was undetermined. 
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Figure 2.3  The relative frequency of occurrence (at the population-level) is shown for three 
prey types over the course of one year, illustrating patterns of seasonal variation observed in 
sea otter diets. 



 104

 

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12

Number of Clusters

In
te

r-
cl

us
te

r  
  d

is
ta

nc
e

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12

A B

Study animals (n = 60)

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12

Number of Clusters

In
te

r-
cl

us
te

r  
  d

is
ta

nc
e

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12

A B

Study animals (n = 60)  

 

Figure 2.4  The results of a cluster analysis used to detect natural groupings of diet 
composition among individual sea otters (sample units) based on their consumption of 13 
prey types. A) Dendrogram showing hierarchical relationships between sample units, with 
branch length indicating the relative distance between adjacent nodes (the terminal nodes 
represent the individual otters). B) Scree plot of the minimum inter-cluster distances plotted 
against the number of clusters considered as “real” groupings.  The horizontal dashed line 
shows the cut-off point actually selected, resulting in 3 clusters.  
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Figure 2.5  Discriminant Analysis scores are plotted for the two discriminant factors, which 
represent multivariate ordinations of 13 prey types.  Data points represent individual otters, 
which have been classified by the cluster analysis into one of three groups based on their diet 
composition (type 1 = filled diamonds, type 2 = open squares, type 3 = filled circles).  Diet 
types are well discriminated into distinct groupings along the two axes.   
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Figure 2.6  The relative frequency of six prey types are shown for the three types of diet 
specialist.  Relative frequency was calculated as the proportion of the diet comprised by each 
prey type (in terms of wet edible biomass), and values were standardized by expressing them 
as differences from the population mean.   
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Figure 2.7  Factor scores are plotted for the first two ordination axes from a principal 
component analysis of foraging behavior.  Data points represent individual otters, classified 
by diet composition (type 1 = filled diamonds, type 2 = open squares, type 3 = filled circles).  
Factor 1 represents an axis of dive efficiency: at one end are animals with low dive success 
rates, variable dive durations and large/rare prey with long handling times, while at the other 
end are animals with high dive success rates, consistent dive durations and small/abundant 
prey with fast handling times.  Factor 2 represents the ratio of prey handling effort to prey 
acquisition effort: animals with high values along this axis captured many prey items per 
dive and had long surface intervals following successful dives, while animals with low 
values along this axis captured few items per dive and had shorter surface intervals 
following successful dives, allocating more time (and thus effort) to prey acquisition at the 
bottom.   
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Figure 2.8  Probability density functions of the rate of energy gain for female otters (with 
large pups), plotted separately for individuals of each prey specialization type.  The vertical 
dashed line represents an arbitrary “critical value”, calculated as 90% of the average rate that 
would be required for an 18 kg female foraging for 65% of the day (based on published 
estimates of sea otter metabolic requirements).  Note that rates of energy gain were log-
transformed because the rate of energy gain was found to be distributed as log-normal.  
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Figure 2.9. Weight-length residuals for adult female study animals plotted against the 
estimated rate of energy gain while foraging (log-transformed).  Individual otters are 
classified by their diet specialization: type 1 = filled diamonds, type 2 = open squares, type 3 
= filled circles.  The solid line shows the least-squares linear regression fit to the data, and 
dashed lines indicate 95% confidence intervals for the predicted relationship (R2 = 0.22, P = 
0.027), indicating that body condition increases as a function of foraging success. 
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Figure 2.10  Foraging effort (percent of time spent foraging) plotted against estimated rate 
of energy gain while foraging.  Expected values (filled diamonds) were calculated based on 
the amount of foraging time that would be needed to meet maintenance requirements, 
accounting for body weight.  Actual percent time foraging was measured for some of the 
study animals using 24-hour focal animal monitoring sessions: these points (observed 
foraging effort) are shown as open circles.  
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Figure 2.11  An ordination of the first two principal components of foraging behavior, with 
a fitness surface superimposed as a contour map: contour elevation corresponds to the net 
rate of energy gain, wi.  The fitness surface was calculated using a multivariate cubic spline 
algorithm (see text for explanation), and the smoothing factor used (λ= –0.9) resulted in a 
GCV score of 0.017 and an effective number of parameters of 7.5.  Individual otters are also 
plotted, classified by their diet specialization: type 1 = filled diamonds, type 2 = open 
squares, type 3 = filled circles. 
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Chapter 3.  Intra-specific variation in foraging specializations: 

modeling the effects of frequency dependence, learning, 

 cultural transmission, and environmental variation 

Introduction 

Behavioral strategies – mate acquisition, parental care, foraging – are often 

described as fixed characteristics of animal species or populations, yet it is generally 

acknowledged that individuals within a population will display some level of variability in 

almost any behavioral trait that can be measured.  Even experimental confirmations of the 

predictions of optimality theory often show that individuals differ significantly with respect 

to the behavior under study (e.g. Krebs et al. 1977).  Individual foraging specializations have 

been recognized for many years (Clark and Ehlinger 1973, Heinrich 1979, West 1986, 

Werner and Sherry 1987, Bridcut and Giller 1995, Beauchamp et al. 1997, Schindler et al. 

1997), as has the potential significance of foraging specializations from the perspectives of 

both evolutionary ecology and community-level processes (Roughgarden 1972, Chesson 

1984, Futuyma and Moreno 1988, Hori 1993, Sherratt and MacDougall 1995).  Bolnick et al. 

(2003) recently summarized the many previously published examples of individual foraging 

specializations, making a strong case that such individual variation is likely a widespread 

and important phenomenon.  Yet despite evidence for the ubiquity of individual variation in 

foraging strategies, and recognition of the need to incorporate such variation into broader 

ecological theory (e.g. Sherratt and MacDougall 1995, Bolnick et al. 2003, Estes et al. 2003), 

there is as yet no quantitative model for understanding or predicting the dynamics of 
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alternative specializations.  Here, I present a generalized theoretical framework for exploring 

individual foraging specializations. 

I start with the simple and well supported observation that foraging specialists may 

be favored over generalists in cases where specialization results in higher detection rates, 

capture success, improved handling efficiency, or improved digestive efficiency (e.g. Clark 

and Ehlinger 1973, Heinrich 1976, Partridge 1976, Werner et al. 1981, Partridge and Green 

1985, Werner and Sherry 1987, Mangel and Clark 1988, West 1988, Dukas and Clark 1995, 

Chittka and Thomson 1997, Kandori and Ohsaki 1998, Goulson 1999, Golet et al. 2000).  

One or more of these effects can occur as a result of a high degree of specificity of prey 

capture/handling skills (skills for one prey type cannot be transferred to other, dissimilar 

types) coupled with an inability to retain skills for multiple prey types (Hughes and O'Brien 

2001).  When prey-specific foraging skills are dynamic rather than fixed – that is to say, they 

can be learned or improved through practice, and likewise be lost through lack of practice or 

interference – then the decision of an individual to specialize rather than generalize, or to 

switch from one specialization to another, becomes a function of the particular foraging 

history of that individual, mediated by species-specific characteristics of learning and 

memory (Partridge 1976).  Hughes (1979) demonstrated that the precise nature of the 

learning effect (i.e. the maximum possible improvement in foraging efficiency and the speed 

of learning and forgetting) could have important implications for the relative frequency of 

specialists and the likelihood of prey switching.  However, because learning is inherently a 

dynamic process, in which individuals at any given time will behave according to their 

current state and past experience, a dynamic approach is needed to fully explore the effects 

of learning on foraging specializations (McNamara and Houston 1985, Houston and 
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McNamara 1988, Mangel and Clark 1988).  Hughes’ (1979) static model is of limited use in 

this regard, and also fails to explain the co-occurrence of alternative foraging specializations 

within a population.   

The co-existence of alternative specializations is somewhat perplexing, as one would 

expect that selection against sub-optimal foraging specializations is relatively strong.  Co-

existence therefore requires some mechanism for diversification into multiple specialist 

types, two or more of which are able to coexist (at an ecological time scale) within the same 

population.  A variety of selective and non-selective mechanisms have been proposed that 

may act alone or in concert to maintain alternative strategies (e.g. Clark and Ehlinger 1973, 

Houston and McNamara 1985, Partridge and Green 1985, Beauchamp et al. 1997, Schmitz et 

al. 1998).  In a recently reported case study of prey specialization in southern sea otters 

(Enhydra lutris nereis), Estes et al. (2003) presented evidence for matrilineal transmission of 

foraging specializations, apparently resulting from pups learning prey-specific handling 

skills from their mothers.  In sea otters, and perhaps in other species (Bonner 1980, Partridge 

and Green 1985), cultural transmission could potentially contribute to the maintenance of 

alternative strategies (Estes et al. 2003).  Note that I am employing a very broad definition of 

cultural transmission as “information or behavior acquired from conspecifics through some 

form of social learning” (Bonner 1980, Boyd and Richerson 1996), and I am considering 

only the transmission of foraging skills (but see Rendell and Whitehead 2001).  

Transmission of prey specializations from mother to offspring, and/or the horizontal 

transmission of learned skills between con-specifics, has been reported for a variety of taxa 

including primates (Huffman and Quiatt 1986, Lefebvre 1995, Stoinski et al. 2000), 

cetaceans (Heimlich-Boran 1988, Weinrich et al. 1992, Rendell and Whitehead 2001, Mann 
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and Sargeant 2003), sea birds (Norton-Griffiths 1968, Annett and Pierotti 1999), rodents 

(Terkel 1996) and mustelids (Estes et al. 2003).  Aside from the individual examples 

mentioned above, however, little attention has been given to the potential role of cultural 

transmission as a driver of intra-specific variation in foraging behavior.   

My goal is to develop a quantitative, conceptual framework that allows me to 

explore foraging specializations at two levels: first, at the individual level I seek to 

understand how and when the ability to modify skills through learning should affect an 

animals decision to behave as a prey specialist or generalist; second, at the population level I 

seek to understand how particular behavioral and life-history characteristics of the forager 

and its prey populations will interact to mediate the co-occurrence of alternative foraging 

specializations. I pose three general questions about variation in foraging specializations: 

first, how does the ability to improve skills through learning affect a forager’s propensity to 

specialize or generalize, and what other factors (including the temporal dynamics of the 

learning processes itself) are important in modifying this decision?  Second, what 

characteristics of predator physiology, life history, behavior, and predator-prey interactions 

are important in determining the coexistence and relative frequency of alternative specialists, 

and the temporal dynamics of specializations within a population?  Third, to what extent 

does cultural transmission mediate the relative frequencies of alternative specializations, and 

temporal variation in these frequencies?  



 124

Methods 

General Approach 

I develop two complementary models with which to achieve my objectives: I use a 

stochastic dynamic programming model (SDPM) to investigate the dynamics of an 

individuals predicted decision to specialize or generalize, and I use an individual based 

model (IBM) to investigate the population level dynamics of foraging specializations.  Both 

of these models share the same basic assumptions about behavioral constraints, prey 

characteristics, and state variable dynamics.  I begin with a simple prey selection model 

(Stephens and Krebs 1986) composed of sequential encounters between a forager and i = 1 

to n potential prey types.  At each time interval of searching (t = 1, 2… T), I assume that a 

forager might encounter no prey (in which case it will resume searching during the 

subsequent interval), or it might encounter a maximum of one prey item.  When a prey item 

is encountered, the forager may capture, handle and consume that prey item (which requires 

one or more additional time intervals) or resume searching for other prey.  I further assume 

that each prey type is uniquely defined by the energy gained by consuming one item (gi), its 

encounter rate (λi), and its baseline handling time (Hi).  I distinguish “baseline” handling 

time from realized handling time (hi), which can vary with the past experience or current 

state of the forager (see below).  The likelihood of encountering no prey items after 

searching for a single time interval is given by 1 − ∑λi; if prey is encountered, the likelihood 

that the item encountered belongs to prey type i is λi / ∑λi. 

The dynamic state variables of interest to me are the forager’s energy reserves and 

the forager’s skills associated with each potential prey type.  The state dynamics of energy 
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reserves (E) are based upon a well established template (Clark and Mangel 2000): E 

increases by gi when the forager consumes an item of prey type i, up to a maximum of EM, 

and decreases due to metabolic expenditures, as a linear function of time (I assume a 

constant rate of metabolism, m, for all activity).  If E declines to some critical level (0 in this 

model) the forager dies.  The state dynamics of foraging skills are less conventional and 

require more explanation.  The skill level for each prey type i (Si) can vary between 1 and 

some maximum, SM.  Si is incremented by li after each capture and handling of prey type i 

(“learning”) and decremented by fi after each capture and handling of prey type j, where j≠ i.  

Si remains unchanged if no prey is encountered.  Parameter fi represents the effect of 

forgetting, or “interference”; that is, the limited capacity of animals to master or retain 

complex handling skills for dissimilar prey types (Heinrich et al. 1977, Goulson et al. 1997).  

I evaluate the effect of varying both li and fi..   

Previous studies have shown that acquired experience with a single prey type can 

affect many aspects of forager physiology and behavior (e.g. Werner et al. 1981, 

Cunningham and Hughes 1984, Partridge and Green 1985, Croy and Hughes 1991, Laverty 

1994, Kandori and Ohsaki 1998, Reiriz et al. 1998, Keasar et al. 2002); here I consider only 

the effect of Si on handling efficiency.  Realized handling time, hi, is modeled as a 

decreasing function of Si: 
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where 0 ≤ ρ < 1 and 0 < γ < ∞.  This function exhibits behavior that is intuitively appealing 

and allows me to explore a variety of biologically plausible scenarios.  The first parameter, 

ρ, determines the magnitude of the learning effect.  When ρ = 0, hi is fixed at Hi, resulting in 
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no realized effect of acquired experience.  As ρ approaches 1, learning has an increasingly 

strong effect on handling time, with hi reaching its minimum value when si = SM.  The 

second parameter, γ, determines the temporal dynamics of the learning process.  When γ = 1, 

hi decreases linearly with Si (this will be referred to hereafter as a linear learning curve).  

When γ < 1, hi decreases rapidly with initial increments of Si, but the rate of change 

decelerates and becomes asymptotic as Si approaches SM (this will be referred to hereafter as 

an “r-shaped” learning curve).  When γ > 1, hi decreases slowly with initial increments of Si, 

but the rate of change accelerates as Si approaches SM (this will be referred to hereafter as a 

“J-shaped” learning curve).   

For both the SDPM and the IBM models I consider a simple system in which 

foragers have two potential prey types to choose from: prey type 1, characterized by high 

energy content and long handling time, and prey type 2, characterized by lower energy 

content and shorter handling time (Table 3.1).  With handling times set to their baseline 

values, the net energy return from prey type 1 (g1 /H1) is higher than that from prey type 2 (g2 

/H2), making it the default “preferred” prey in the absence of any learning effect.  It is worth 

emphasizing that the effect of learning is fundamental to all results presented here: if ρ = 0 

then my theoretical framework collapses to the simple optimal prey selection model 

(Schoener 1971, Pulliam 1974, Charnov 1976, Stephens and Krebs 1986).  Specifically, if λ1 

is the encounter rate for prey type 1, then a forager is predicted to ignore prey type 2 if:  
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otherwise the forager is expected to generalize (capture either prey type when encountered). 
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Stochastic Dynamic Programming Model 

The key feature of a SDPM is that each potential decision available to an individual 

at any time t can be evaluated in terms of its expected fitness consequences at time t+1, and 

thus the expected behavior depends on both the past experience, the current state and the 

probable future state of the forager (Mangel and Clark 1988, Clark and Mangel 2000).  I 

equate fitness with reproductive success at time T, where reproductive success may be 

defined as the number and/or viability of offspring produced.  The fitness of an individual at 

time t, F(e,s1,s2,t), is the maximum expected reproductive success at T, given E(t) = e, S1(t) = 

s1, and S2(t) = s2.  At time T, fitness is an increasing function of the individual’s remaining 

energy reserves:   
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where θ and φ are parameters that together characterize the shape of the relationship between 

energy reserves and reproductive success (a logit function is used so that fitness varies 

between 0 and 1).  This relationship could conceivable take a variety of forms: in sea otters, 

for instance, the probability of successfully rearing offspring is an s-shaped (logistic) 

function of the mother’s energy reserves (Monson et al. 2000).  I evaluate a range of 

potential values for θ and φ (Table 3.1), allowing for s-shaped, r-shaped, j-shaped or linear 

relationships.   

For times previous to T, fitness is calculated using the dynamic programming 

equation:  
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with the understanding that appropriate constraints apply to each state variable, as described 

above, and that realized handling times h1 and h2 are functions of S1 and S2 (respectively) as 

described by equation 33.  The last term accounts for the probability of incidental mortality 

(M), defined as death due to causes other than depletion of energy reserves.  The solution to 

the dynamic programming equation (or DPE) is calculated iteratively, moving backwards in 

time from t = T−1 to t = 1.  Solving the DPE provides both the expected fitness and the 

predicted behavior of a forager – to capture or ignore prey of type 1 or 2, when encountered 

– at each time, t, as a function of the current values of its state variables.  The predicted 

behavior is determined by evaluating the first two rows of equation 36 (row 1 corresponds to 

prey 1 and row 2 corresponds to prey 2).  I solve the DPE over a wide range of values for all 

parameters, to assess the effect of each parameter on the decision matrix, the 

multidimensional array of predicted “best decisions” at all possible values of E, S1, S2, and t 

(Mangel and Clark 1988, Clark and Mangel 2000).  Table 3.1 gives the baseline values of 

each parameter used for the SDPM, as well as the range of values evaluated. 

 Individually Based Model 

I next design an IBM to conduct replicated simulations of forager populations.  This 

allows me to explore population-level dynamics of foraging specializations in a simple 

world with two prey types, where the behavior of each individual at any given time is 

determined by the current environmental conditions (i.e. prey population densities) and the 

individual’s own state.  One possible way of specifying the appropriate decision rules for 
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individuals in the IBM would be to use results from the SDPM to specify optimal behavior 

under every possible set of conditions.  However, the results of the SDPM (Table 3.2; Figure 

3.1) suggested that a much simpler function could be used to closely approximate the 

predictions of the decision matrices, thereby providing a simple set of “rules of thumb”.   

Specifically, a forager that has encountered an item of prey type i will either capture or keep 

searching based primarily on the state of its skill level for the encountered prey (Si), its skill 

level for alternative prey types included in its diet (Sj, j≠ i), and the current encounter rates 

for all prey types (λ1, λ2… λn).  I use a 4-parameter function to define an appropriate 

decision cut-off value for each prey type: if the skill level for prey type i is below the cut-off 

value then the individual will reject it, otherwise it will accept it.  Specifically, in the case of 

2 possible prey types, an individual is predicted to reject prey type 2 (and thus specialize on 

prey type 1) if: 
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Similarly, it is predicted to reject prey type 1 (and thus specialize on type 2) if: 
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The parameter αj determines the magnitude of the effect of a forager’s skill level for 

alternative prey type j, ωj allows for non-linearity of the function with respect to skill, εj is a 

constant and δj determines the effect of prey abundance (i.e. the encounter rate of prey j 

relative to prey i, scaled to the encounter rate for all prey types).  Depending on the values of 

α, ω, ε, and δ, equations 37 and 38 can result in rules of thumb corresponding to a wide 

array of alternative strategies: always specialize on one prey type irrespective of prey 

encounter rates, always generalize, specialize on one prey type if that prey is very abundant, 
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or anything in between.  How then to select appropriate parameter values?  An important 

feature of the IBM approach is that the dynamics of interest arise as emergent properties 

from the cumulative behavior of many individuals, each following very simple decision rules 

(Railsback 2001); moreover, the decision-rules themselves are among the emergent 

properties.  Accordingly, I use natural selection simulations to parameterize the decision rule 

function for each hypothetical scenario, as I explore the effect of model variables.   

The basic algorithm for the IBM is: initialize the population (with starting values for 

each state variable selected randomly) and, starting at time t = 0, allow all individuals to 

actively forage for T time units (T can be thought of as one year in the life of the forager).  

The sequence of prey encounters for each individual is entirely stochastic, and individuals 

accept or reject encountered prey items following the rules of thumb described above.  State 

variable dynamics are identical to those described for the SDPM.  Any individuals whose 

energy reserves dip to 0 are assumed to die; additionally, incidental sources of mortality (e.g. 

disease, predation) can strike any individual at any time during the year with probability M.  

At the end of each year, those individuals that are still alive can reproduce: for simplicity, I 

assume an all-female population.  Some proportion of the parent’s energy reserves 

(arbitrarily set to ¼) are transferred to the offspring, which survive to weaning with 

probability W, where W is given by equation 35 (offspring viability is thus a function of the 

parent’s energy reserves at year-end).  After the year-end reproduction period, all adults and 

surviving new recruits begin another year of foraging.   

I make a number of modifications to the basic IBM algorithm to produce a life 

history pattern typical of the larger vertebrates for which both alternative foraging 

specializations and cultural transmission have been reported (e.g. sea otters, cetaceans, 
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primates).  The age of first reproduction is delayed until 2 years of age, and annual 

reproductive output consists of a single offspring.  Incidental mortality of adults (M) is low 

until the age of senescence (5 years), after which M increases greatly, thereby limiting 

maximum lifespan to approximately 10 years.  Together, these life history traits result in a 

relatively low intrinsic growth rate for the population (rmax ≅ 0.15).  To prevent forager 

populations from growing exponentially and indefinitely, I add density dependence such that 

M increases with population size, resulting in a carrying capacity for the forager population 

of approximately 1000 individuals.   

The mean encounter rate for each prey type, λi, is re-calculated at the beginning of 

each year:  
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where Ni,y is the population size of prey species i at year y, and Ki is the carrying capacity of 

the ith prey species.  By re-calculating encounter rates only once per year, I assume that intra-

annual variation in prey population size is insignificant relative to inter-annual variation.  

Given the large size of prey populations relative to the forager population, I believe this is a 

reasonable assumption.  I further assume that prey population recruitment is discrete, annual, 

and occurs at year-end: 
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where Ci is the number of individuals of prey population i consumed by predators during 

year y.  Per-capita mortality from predation is typically incorporated into r, the intrinsic rate 

of population increase; equation 40 tracks the net effect of predation as a separate term, thus 
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facilitating the consideration of two alternative scenarios of predator-prey interaction.  Under 

the first scenario, the predator population has the potential to limit its own prey populations, 

so that the number of prey individuals consumed by the predator population impacts the prey 

population size the following year.  This scenario allows for frequency dependent benefits of 

a particular prey specialization, and will be referred to hereafter simply as frequency 

dependence.  Under the second scenario, the predator does not limit its own prey populations 

and C is held constant, so that the dynamics of the prey population are effectively decoupled 

from predation by the focal population of foragers.  In this scenario C represents loss of prey 

individuals to all sources of mortality, and predation by the focal population of foragers is 

assumed to be entirely compensatory.  Scenarios one and two represent two extreme cases: 

intermediate levels of frequency dependence can also be modeled by varying p, the 

proportion of C that is constant.  I define the intensity of frequency dependence as 1–p: this 

index provides a measure of the relative impact of predation by the forager on prey 

population dynamics.   

In scenarios with or without frequency dependence, r accounts for net recruitment of 

new individuals into the prey population, and is assumed to be subject to environmental 

stochasticity.  To model stochasticity, a mean value for r is specified (arbitrarily) for each 

simulation, and annual deviations from the mean are modeled as correlated random deviates 

with mean of 0, coefficient of variation ψ and first-order temporal autocorrelation of κ 

(following methods of Doak and Morris 2002).  By adjusting the parameters ψ and κ I can 

vary the magnitude and frequency of fluctuations in prey abundance, and thus evaluate how 

patterns of variation in prey populations affect the temporal dynamics of foraging 

specializations.   
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I evaluate the temporal dynamics of foraging behavior both with and without the 

cultural transmission of foraging skills.  I consider only matrilineal (vertical) transmission, 

whereby a parent transfers some of its acquired skills to its offspring.  Specifically, the skill 

of a new forager recruited to the adult population is: 

σµχβ ,,, )( += ikik YS  41 

where Sk,i is the initial skill level of forager k for prey type i, Yk,i is the skill level of k’s 

mother for prey type i, β is the fraction of Yk,i inherited by the offspring and thus represents 

the effect of cultural transmission, and χµ,σ is a normal random deviate with mean µ and 

variance σ2,  representing the effect of random variation in innate foraging skills.  I assess 

the effect of phenotypic variation by comparing low vs. high variation in innate foraging 

skills.  I evaluate the effect of cultural transmission on the temporal dynamics of foraging 

specialization by varying β from 0 (no cultural transmission) to 0.9 (very strong cultural 

transmission).   

Table 3.1 summarizes the baseline values for all parameters in the IBM, as well as 

the range of values evaluated.  For each unique combination of IBM parameter values, I 

initialize a starting population with randomly assigned values for the decision rule 

parameters and treat each unique set of values as a “genotype”.  I assume that foraging rules 

of thumb are heritable and exhibit additive genetic variation (e.g. Kolliker et al. 2000), and I 

simulate this variation by adding small, random deviations to the decision rule parameters 

inherited from parents by offspring (deviations are normally distributed with mean = 0).  

Genotypes can thus drift over generational time, with selection sorting out those 

combinations of values that produce non-viable strategies (e.g. specializing when 

generalizing would actually be more profitable, or vice versa).  I allow a sufficiently long 
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period of time (at least 2500 years per replication) for the surviving genotypes to converge to 

a stable distribution, and I conduct 10 replications of the selection process to ensure that 

results are repeatable and consistent.  A random sub-set of optimal genotypes is then selected 

from the final distribution, and used for all further simulations.   

For each combination, having arrived at appropriate distributions for decision rule 

parameter values using natural selection simulations, I run 100 replications of 100 years, to 

evaluate the temporal dynamics of foraging behavior in the population.  I quantify the 

tendency of individuals to be foraging specialists by tracking I, the annual index of 

specialization.   I calculate I as the population average of Ik, the diet overlap between 

individual forager k and the population: 
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where ni,k is the number of items of prey type i consumed by individual forager k during the 

year (Bolnick et al. 2002).  For individuals that specialize on a single prey type, Ik takes on 

the value qi, where qi is the proportion of the population’s diet composed of the ith prey type.  

In contrast, Ik is equal to 1 for generalists that consume resources in direct proportion to the 

population as a whole.  Small values of I thus reflect a high prevalence of specialization in 

the population.  In addition to tracking I, the frequency of co-occurrence of alternative 

specialists in each simulation is also measured: I define this index as the proportion of years 

in which prey type-1 specialists and prey type-2 specialists each make up at least 10% of the 

forager population (I reason that co-occurrence implies that specialists of each type are 

sufficiently abundant to be both observable and biologically relevant, and individuals are 

considered to be specialists if their diet consists solely of one prey type).  Finally, I track the 
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between-year variation in the frequency of specialists of each type (measured as the CV, or 

coefficient of variance).   

In total I evaluate 100 unique combinations of IBM parameter values.  I determine 

the sensitivity of the IBM results to 8 model parameters (ρ, li, fi, γ, β, ψ, κ, and the intensity 

of frequency dependence) using multiple regression analysis: specifically, I calculate the 

portion of variance in two response variables (the index of specialization, I, and the 

frequency of co-occurrence of alternative specialists) explained by each parameter, after 

accounting for variance due to all other parameters.  Individual variance components are 

estimated by their partial coefficients of determination (r2
y1.2…n), following Neter (1990).  To 

account for uncertainty, I calculate the 95% confidence intervals for the r2
y1.2…n estimates 

using the bootstrap-t method (DiCiccio and Efron 1996).  

Unless otherwise indicated, effects associated with variation in each parameter are 

reported assuming that all other parameters are held at their baseline values (Table 3.1).  

Error bars in figures and all ranges of values reported in the text (in parentheses) represent 

the 95% confidence intervals of the statistic in question.  
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Results  

Stochastic Dynamic Programming Model 

The results of the SDPM suggest that when skill level has a sufficiently large effect 

on prey handling times (e.g. ρ ≥ 0.5), and when learning of prey-specific handling skills is 

slow enough relative to the organism’s life span, there will be certain conditions under which 

a forager will specialize on one prey type or the other, and other conditions under which it 

will generalize.  More specifically, the expected behavior of a forager can be expressed as a 

function of its relative skill levels for each prey type (Figure 3.1). 

Varying the values of θ and φ has no appreciable effect on the model predictions, 

causing only slight differences in expected behavior as t approaches T and as S1 or S2 

approach SM.  Consequently, for all further analyses I hold θ and φ fixed at values that result 

in a s-shaped fitness function: I chose these particular values because they approximate the 

functional relationship between energy reserves and reproductive success described for sea 

otters (Monson et al. 2000).   Varying other model parameters (within the ranges indicated in 

Table 3.1) has the effect of changing the relative size of each of the 3 regions of the decision 

matrix (Figure 3.1; Table 3.2).  

Population Dynamics 

The frequency of specialists vs. generalists at the population level, as predicted by 

the IBM, is generally consistent with the individual responses predicted by the SDPM.  In 

particular, the prevalence of specialists in the population at any given time varies with the 

basic model parameters in the direction predicted by the results of Table 2 (Figure 3.2).   
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The degree of innate variation in the foraging skills of new recruits has a strong 

effect on both the prevalence of specialists and the frequency of co-occurring alternative 

specializations: when all other parameters are held constant (and assuming no frequency 

dependence or cultural transmission), increasing σ2 from the minimum to the maximum 

allowed value (Table 3.1) causes a decrease in I (from 0.75 ±0.014 to 0.69 ±0.012) and an 

increase in the frequency with which co-occurring alternative specialists are observed (from 

0.35 ±0.091 to 0.65 ±0.082).  However, other factors that affect the temporal dynamics of 

specialization in the population – specifically, frequency dependent effects, cultural 

transmission, and stochastic variation in prey species abundance – have the same qualitative 

effects irrespective of the magnitude of innate variation in foraging skills, therefore I report 

all successive results for a single, intermediate level of variance (σ2 = SM/10). 

The temporal dynamics of foraging specializations differ significantly between 

simulations with purely stochastic vs. frequency dependent prey dynamics: frequency 

dependence results in a far higher probability of observing alternative specializations (Figure 

3.3). This difference appears to be largely the result of a decrease in the temporal variability 

of specializations, rather than an increase in the overall prevalence of specialists: assuming 

baseline values for all parameters, the between-year variability in the frequency of type 1 

specialists is greater for simulations without frequency dependence (CV = 0.54 ± 0.13) than 

for simulations with frequency dependence (CV = 0.35 ± 0.02), and the pattern is identical 

for type 2 specialists (CV = 0.81 ± 0.26 for simulations without frequency dependence vs. 

0.44 ± 0.02 for simulations with frequency dependence). 

The ability of individual foragers to pass on learned skills to offspring via cultural 

transmission (β > 0) has a striking effect on the temporal dynamics of foraging 
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specializations.  Under certain conditions, a 30% increase in the relative strength of cultural 

transmission (from β = 0.5 to β = 0.8) results in a 100% increase in the frequency of co-

occurring alternative specializations (Figure 3.3).  The existence of frequency dependent 

effects has a positive interaction with the effect of cultural transmission (Figure 3.3A), and 

there are also interactions between β and other parameters such as the rate of forgetting (fi) 

and the shape of the learning curve (γ).  In simulations with an r-shaped learning curve, the 

introduction of cultural transmission results in a greater relative increase in the frequency of 

co-occurring alternative specializations than simulations with a linear or J-shaped learning 

curve (Figure 3.3B).  Differences in the temporal dynamics of foraging specializations in 

simulations with and without cultural transmission can be explained in part by the selective 

effects of cultural transmission on the decision rules themselves (Figure 3.4). 

The degree of stochastic temporal variation in prey population abundance has some 

effect on the frequency of co-occurring alternative specializations, although less striking 

than the effects of frequency dependence or cultural transmission.  An increase in the 

magnitude of stochastic variation (ψ) is associated with a decrease in the frequency of co-

occurring alternative specialists (0.48 ± 0.08 when ψ = 0.25 vs. 0.27 ± 0.07 when ψ = 2.0).  

The relative speed of stochastic changes in prey populations also affects the frequency of co-

occurrence, although this effect is only statistically significant in simulations with cultural 

transmission: increased temporal autocorrelation of prey abundance is associated with a 

lower frequency of co-occurring alternative specialists (0.57 ± 0.07 when κ = 0.2 vs. 0.48 ± 

0.07 when κ = 0.7, and β = 0.8 in both cases).  Low values of κ (resulting in rapid changes in 

prey abundance) are associated with greater co-occurrence of alternative specializations and 
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less temporal variability in the frequency of specialists (CV of 0.42 ± 0.04 when κ = 0.2 vs. 

CV of 0.52 ± 0.04 when κ = 0.7, as measured for type 1 specialists).  

The model parameters with the greatest relative effects on the IBM results are (in 

decreasing order of their associated sensitivities) the intensity of the learning effect (ρ), the 

intensity of frequency dependence, and the rate of forgetting (fi) (Figure 3.5).  The model 

results are less sensitive to the degree of cultural transmission (β), the rate of learning (li), 

the shape of the learning curve (γ), and the degree of stochasticity of prey populations (ψ and 

κ), at least within the ranges of values explored here.   
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Discussion 

The results of the SDPM and the IBM confirm the primary prediction of Hughes’ 

(1979) model: the ability of animals to learn and improve foraging skills through experience 

leads to an increased tendency to specialize, and can also result in individual switching from 

one prey specialization to another.  Given the results of both models, I predict that the 

following behavioral, physiological and/or life history characteristics will be associated with 

increased levels of specialization: 1) increased experience with one particular prey type has a 

strong effect on some component of foraging (e.g. handling time, capture success, digestion 

efficiency); 2) the rate at which new skills are acquired through experience is relatively 

slow; 3) there is limited ability to learn or retain complex learned skills for one prey type 

when many other prey types are included in the diet (skills are either forgotten through lack 

of use, or lost via interference with new skills); 4) the learning curve for new foraging skills 

is J-shaped, rather than linear or r-shaped; 5) the forager does not carry extensive energy 

reserves, or at least it cannot rely on such stores to supplement poor foraging performance 

over the time required to learn new skills; 6) metabolic costs of foraging are high relative to 

energy reserves, or to the energy gained by each prey capture; 7) the forager is able to 

transfer learned skills to offspring, either actively (via teaching), passively (no direct 

teaching, but the offspring nonetheless learns skills through observation or mimicking of the 

parent, e.g.  Stoinski et al. 2001) or through stimulus enhancement (e.g. Visalberghi and 

Addessi 2001).  In addition to these characteristics of the forager, the following prey species 

characteristics are also predicted to result in an increased degree of specialization and/or 

likelihood of alternative specialists: 8) the encounter rate for all prey types is relatively high; 

9) the population growth rates or abundance of the prey species are significantly impacted by 
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predation pressure by the forager, resulting in frequency/density dependent benefits of 

alternative specialist strategies (Partridge and Green 1985, Estes et al. 2003); 10) stochastic 

variation in the abundance of the prey species (i.e. variation not due to predation by the 

forager) is neither too extreme in magnitude nor too “slow” with respect to the time required 

for an individual forager to learn new foraging skills. 

Some of these predictions – particularly predictions 1 and 2 – are immediate 

consequences of the fundamental assumptions of the model.  Clearly if there is little impact 

of learned skills on any of the components of foraging success, or if new skills can be 

acquired so quickly that there is little cost to doing so, then some (or all) of the potential 

benefits of specialization are negated.  Some of the other predictions, however, are less 

intuitive, and bear closer examination.  Prediction 3, that specialization is more likely when 

specific skills for one prey type are forgotten or lost when the forager switches to different 

prey, is essentially Darwin’s interference hypothesis (Darwin 1876, Heinrich et al. 1977, 

Goulson et al. 1997).  Interference in handling skills for different prey types, resulting in 

reduced handling efficiency of generalists vs. specialists, has been shown for diverse taxa 

(e.g. Cunningham and Hughes 1984, Laverty and Plowright 1988, Goulson et al. 1997, 

Gegear and Laverty 1998) and may be a common characteristic among predators with 

multiple, dissimilar prey types.  In the current model, the interference effect was introduced 

using parameter fi, however the precise nature and strength of an interference effect is likely 

to vary widely from system to system, and may by countered to some degree by the ability to 

transfer learned skills from one prey type to novel prey types (Hughes and O'Brien 2001).  

The results of the IBM were highly sensitive to this parameter (Figure 3.5), suggesting that 
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experimental quantification of the interference effect may provide a fruitful area for further 

research.  

The results of both the SDPM and the IBM suggest that a J-shaped learning curve is 

more likely to result in specialization than an r-shaped curve, although the shape of the 

learning curve has a greater effect on the likelihood of co-occurring specializations than it 

does on the prevalence of specialization itself (Figure 3.5).  A J-shaped learning curve means 

that an individual’s initial experiences with a novel prey type will have very little effect on 

its handling efficiency, and thus the relative cost of switching to a new prey type is greater 

than for an r-shaped curve.  In those few cases where the learning dynamics for novel prey 

types have been accurately measured, the result has usually been an r-shaped learning curve 

(Cunningham and Hughes 1984, Croy and Hughes 1991, Hughes and O'Brien 2001).  

However, the shape and slope of the learning curve will likely differ greatly between 

different prey types, even within the diet of a single predator species (Laverty 1980, Laverty 

1994).  A slower, J-shaped learning curve may be more typical for apex predators such as 

sea otters (Estes et al. 2003), which have a wide potential prey base that includes dissimilar 

taxa at multiple trophic levels, some requiring complex handling skills.  At the extreme, 

foragers that utilize highly complex foraging techniques or use tools to manipulate prey may 

require years to become highly adept at a particular prey handling technique (Huffman and 

Quiatt 1986, Guinet and Bouvier 1995, Estes et al. 2003).  In tool-using foragers the learning 

curve may be an exaggerated J-shape, or even a step function, with a long “experimental 

period” resulting in virtually no increase in skill followed by a fairly rapid improvement 

period as the tool is mastered (Huffman and Quiatt 1986).  A prolonged period of offspring 

dependency would be particularly adaptive in the case of strongly J-shaped learning curves, 
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because the offspring can get past the initial slow-learning period and perfect its skills while 

still “subsidized” by the parent.  

A prolonged period of offspring dependency also allows for the possibility of 

transmission of skills from parent to offspring via cultural transmission.  My model suggests 

that cultural transmission can have a strong effect on the degree of specialization and the 

likelihood of observing alternative specializations within one population (Figure 3.5).  

Cultural transmission, as I have modeled it, ensures that new recruits tend to start out their 

independent life with honed skills for one prey type but minimal skills for alternative prey, 

rather than intermediate skills for all prey.  Such a tendency will result in an increased 

degree of specialization within the population; however, this only accounts for part of the 

observed effect.  When I use identical decision rules for simulations run with and without 

cultural transmission, the difference in the degree of specialization is less pronounced than 

when I use appropriate decision rules for each simulation (and this is the case irrespective of 

the value of other model parameters; Figure 3.4), because selection results in different 

optimal decision rules in populations exhibiting cultural transmission.  The difference may 

arise in part because, in populations exhibiting cultural transmission, the inclusive fitness of 

individuals is not just a function of energy reserves transferred to offspring, but also a 

function of the skills that can be transferred.  Under certain conditions this will lead to a 

selective trade-off between competing rules of thumb: although generalizing would be more 

likely to result in higher energy reserves at reproduction, continued specialization would be 

more likely to result in effective foraging skills to transfer to future offspring.   

Cultural transmission represents one solution to the problem posed by prey types 

whose relative profitability depends on complex, hard to master foraging skills.  An 
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alternative solution to the same problem is a “hard-wired” solution, i.e. genetically 

controlled behavioral, morphological or physiological adaptation to the specific 

requirements of a particular prey type.  In the latter case, individual foragers are expected to 

specialize on the prey type appropriate to their particular “hard-wired” phenotype (Werner et 

al. 1981, Ehlinger 1990).  This hard-wired solution (or trophic polymorphism, sensu 

Robinson and Wilson 1994, Smith and Skúlason 1996), has been documented for many taxa 

(e.g. Smith 1990, Robinson and Wilson 1995, Giorni Christopher et al. 1996).  In systems 

where the suite of potential prey is not sufficiently stable over time, however, trophic 

polymorphism may be less adaptive than a combination of behavioral flexibility, learning 

ability and cultural transmission, the latter allowing populations to rapidly adjust to changes 

in prey abundance, adopt new prey species, or otherwise accommodate changing foraging 

requirements (Bonner 1980).   

In addition to increasing the prevalence of specialization, cultural transmission is 

associated with an increase in the co-occurrence of alternative specializations, likely due to 

an intergenerational lag effect created by transmission of skills from mother to offspring.  As 

the relative abundance of different prey populations changes from year to year, the predicted 

“optimal” behavior for naive new recruits also changes (e.g. from specialization on prey type 

1, to generalization, to specialization on prey type 2).  In a population with no cultural 

transmission, the result of such changes is substantial annual variation in the prevalence of 

specialists, and the population will often be devoid of specialists of a given type.  On the 

other hand, if new recruits inherit prey-specific skills from their parents, it may remain 

profitable for them to specialize on one prey type even when its encounter rate decreases 

substantially.  Matrilineal transmission of skills can thus delay the time it takes for one 
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specialization to disappear from the population altogether, thereby increasing the likelihood 

of observing alternative specializations within the population at any given time.   If there is 

also frequency/density dependent limitation of prey populations by the forager population, 

such that the abundance of each prey type tends to cycle from low to high (but always out of 

step with other prey types), then the intergenerational lag created by cultural transmission 

may act to prevent specializations from ever disappearing entirely from the population.  The 

positive interaction between frequency dependence and cultural transmission (Figure 3.3a) 

supports such a scenario.   

The degree to which dynamics of the prey populations were controlled by predation 

pressure from the forager population strongly impacted simulation results (Figure 3.5).  

Frequency dependence tends to result in regular, out-of-step oscillations in the relative 

abundance of alternative prey populations, and at the same time it tends to limit the absolute 

magnitude of such variation.  Similarly, in the absence of frequency dependence, the nature 

of stochastic variation in prey population abundance determined the degree of co-occurrence 

of alternative specializations.  In populations where the year-to-year changes in prey 

population abundance are low (corresponding to high temporal autocorrelation), individual 

learning is able to “keep up” with variation in encounter rates, and thus the relative 

frequency of specialists essentially tracks prey variation.  Conversely, in populations where 

the year-to-year changes in prey population abundance are high (corresponding to frequency 

dependence, or low temporal autocorrelation), individual learning cannot keep up with 

variation and there is a lag, similar to that created by cultural transmission, which dampens 

variation in the abundance of specialists and increases the likelihood of observing alternative 

specializations within the population at any given time.  However, if variation in prey 
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abundance is too great in magnitude then any type of specialization can become risky – a 

prey type that is very profitable one year may be extremely rare the next – and so a “risk-

spreading” strategy of generalization becomes more prevalent. 

The general patterns predicted by the models should be broadly applicable to many 

animal species.  Nonetheless, I must highlight a number of qualifications.  The most 

important caveat concerns the quantitative results reported, which (in contrast to the 

qualitative patterns highlighted above) depend entirely on the specific parameter values 

chosen (arbitrarily) for the simulations.  For example, the co-occurrence of specialists for 

both prey types in the absence of frequency dependence or cultural transmission depended 

upon a) the range of prey-specific parameters being set so that either prey type could be 

“preferred prey” under at least some realized combinations of prey abundance and skill 

levels; and b) the existence of some variation in the initial skill levels of new recruits, 

corresponding to continuous phenotypic variation (Verbeek et al. 1994).  In the interest of 

generality, the underlying structure of the models also reflected some overly simplistic 

assumptions: for example, I assumed that energy was the sole limiting factor for my 

hypothetical forager, and that there were no other relevant constraints or decision criteria 

(e.g. no specific nutritional requirements, no elevated predation risks associated with one 

prey type, etc.).  Incorporating more than 2 prey types, and including multiple constraints 

and decision criteria, would undoubtedly result in more complex dynamics.  Future 

elaborations of this approach should also include some evaluation of the effect of sensory 

and memory limitation of individuals, and thus the potential for errors in individual 

assessments of relative prey abundance (Hirvonen et al. 1999). 
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Despite the caveats mentioned above, I believe that the general patterns observed 

allow me to suggest some explicit tests that could be used to either falsify or lend support to 

the model results (Table 3).  The first 4 suggestions in Table 3 describe controlled 

experiments that could be performed in the laboratory or in highly tractable study systems 

conducive to manipulative field experiments (e.g. insect foragers: Gegear and Laverty 1998).  

Many fish species, such as bluegill sunfish (Lepomis macrochirus), would provide excellent 

study systems for these types of manipulations because it is possible to manipulate foraging 

conditions or food resources, and alternative specializations are already known to occur 

(Werner et al. 1981, Wildhaber and Crowder 1995).  Indeed, the first suggested manipulation 

(decreasing food resources and measuring tendency to specialize) has already been tested to 

some degree by Werner et al. (1981), with results supportive of the patterns predicted here.  

Suggestions 5–9 in Table 3 describe possible field studies involving inter- or intra-specific 

comparisons.  Comparative studies would necessarily provide weaker tests of the model 

predictions; however, such studies could nonetheless provide further examples and support 

(or lack of support) for the model predictions.  For example, comparisons of the degree of 

specialization on prey types having different learning curves (Table 3, #8) could be 

conducted with species such as bumble bees (Bombus sp.), where variable learning rates 

have already been described (Laverty 1994).  Multi-year studies of species such as the Cocos 

Island finch (Pinaroloxias inornata), for which alternative specializations have been 

reported (Werner and Sherry 1987), would allow testing of the expected relationship 

between the degree of specialization and the abundance of energy reserves (Table 3, #9).  

Intra-specific comparisons of populations that utilize different suites of prey in different 

locations, and/or occur at differing population densities, can be used to test for correlations 
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between specialization and prey-specific learning curves or inter-annual variance (Table 3, 

#7): sea otters (Enhydra lutris) provide an excellent study system for such comparisons, 

because different populations in Alaska and California utilize highly diverse prey 

assemblages (Riedman and Estes 1990) and cover the full spectrum of possible population 

densities (Estes 1990, Estes et al. 1996). 

In the recent foraging theory literature much attention has been focused on the 

importance of individual learning and memory limitations on foraging behavior (e.g. Dukas 

1998, Shettleworth 1998); however, such considerations are rarely (if ever) considered at the 

level of community ecology, where food web interactions are considered to be characteristic 

of populations.  The conceptual framework developed here suggests that the ability of 

foragers to learn and transmit skills via cultural transmission can have a significant effect on 

the degree of specialization within a forager population, and can lead to the co-existence of 

alternative specializations.  I propose that individual variation should be incorporated into 

community interaction webs: for example, a single population of foragers might be 

functionally equivalent to several co-existing populations of predators with different suites 

of trophic interactions.  Variation between individuals often represents more than just a 

statistical nuisance, and needs to be more realistically incorporated into our thinking about 

animal populations. 
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Tables  

Table 3.1 A summary of model parameters, their baseline values, and the range of values 
evaluated.  Where two sets of values are provided, the first applies to prey type 1 and the 
second to prey type 2.  
Parameter Definition and/or effect of parameter Baseline  Range of values  
 
T 

 
Number of time intervals per model run 

 
50 

 
N/A 

EM Maximum level of individual energy 
reserves 

20 N/A 

SM Maximum skill level for prey type i  20 N/A 

gi Energy gained by consuming one item of 
prey type i 

7, 4 N/A 

Hi Baseline handling time for prey type i  5, 3 N/A 

hi Realized handling time for prey type i     (See text, equation 2) 

m Metabolic rate 0.975 0.95  1 

λi Average encounter rate for prey type i  0.3,  
0.5 

0.1  0.4,  
0.1  0.6 

li Rate at which new skills are learned for 
prey type i 

1 0.3  1.5 

fi Rate at which skills are forgotten for prey 
type i 

1 0  3 

ρ Effect of learned skills on handling time 0.6 0.4  0.8 

γ Shape of learning curve (r-shaped, linear, J-
shaped) 

1 0.67  1.5 

θ  Slope of fitness function EM/3  EM/10  EM 

φ Shape of fitness function EM/10 EM/20  EM/2 

M Incidental mortality rate  0.001 0.0002  0.002 
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Table 3.1 (continued), Additional Parameters for Individually Based Model  

Parameter Definition and/or effect of parameter Baseline  Range of values  
αi ωi εi δi Decision rule function parameters for prey 

type i 
 (Unlimited range of values) 

W Weaning success rate (calculated as a 
function of parents total energy reserves at 
reproduction) 

     (See text, equation 35) 

K1 Carrying capacity of prey population 1  60000    N/A 

K2 Carrying capacity of prey population 2  80000    N/A 

 R1 Mean intrinsic rate of increase of prey 
population 1 

0.15 0.10  0.30 

 R2 Mean intrinsic rate of increase of prey 
population 2 

0.20 0.10  0.40 

ψ Environmental stochastic variation in ri 
(CV) 

0.75 0.1  1.5 

κ First order temporal autocorrelation of ri 0.5 0.2  0.7 

µ Mean skill level of new recruits, excluding 
effect of β  

SM/3 N/A 

σ2 Variance in skill level of new recruits SM/10 SM/100  SM 

β Effect of cultural transmission, defined as 
the proportion of parents skills transferred 
to offspring 

0 0  0.9 
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Table 3.2.  Summary of the effects of the SDPM parameters.  The third column refers to the 
labeled lines in Figure 1 that define the regions of specialization on each prey type. 
 

Change to model parameter  Effect of change on decision matrix Figure 1 

t → T (reproduction immanent) Increased specialization, particularly 
on prey 1 (high-Energy prey), and 
reduced region of generalization 

1c, 2c 

↑ ρ, effect of skill  Increased region of specialization 
on both prey types 

1c, 2c 

↓ ρ, effect of skill  Decreased region of specialization 
on 1, and no region of specialization 
on 2 

1b 

↑ li, rate of learning new skills Increased region of generalization 1b, 2b 

↑ fi, rate of forgetting  Increased region of specialization 
on both prey types 

1c, 2c 

↑ γ: learning curve is “J” shaped Increased region of specialization 
on both prey types 

1c, 2c 

↓ γ: learning curve is “r” shaped Increased region of generalization 1b, 2b 

↓ e(t), state of energy reserves Increased region of specialization 
on both prey types  

1c, 2c 

↑ EM, maximum energy reserves Increased region of generalization 1b, 2b 

↓ EM, maximum of energy reserves Increased region of specialization 
on both prey types 

1c, 2c 

↓ m, metabolic costs Increased region of generalization 1b, 2b 

↑ m, metabolic costs Increased region of specialization 
on both prey types  

1c, 2c 

↑ λ1, λ2, encounter rate for all prey Increased region of specialization 
on both prey types 

1c, 2c 

↓ λ1, λ2, encounter rate for all prey Increased region of generalization 1b, 2b 

↓ λ2, encounter rate for prey type 2 Increased region of specialization 
on 1, decreased region of 
specialization on 2 

1c, 2b 

↓ λ1, encounter rate for prey type 1 Increased region of specialization 
on 2, decreased region of 
specialization on 1 

1b, 2c 
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Table 3.3  Suggested experiments or comparative studies to test the predictions of the 
models 
 

Suggested Experiment or Comparison Predictions 

1) Manipulate individual energy 
reserves (e.g. decrease food 
abundance) 

The degree of specialization will increase as 
mean abundance of energy reserves 
decrease 

2) Manipulate intensity of frequency 
dependence (the degree to 
which predation intensity is 
coupled to prey population 
dynamics)  

There will be increased co-occurrence of 
alternative specializations in 
treatments with frequency 
dependence 

3) Manipulate variation in prey 
population  
(increase or decrease the 
magnitude or frequency of 
changes in prey abundance) 

There will be increased co-occurrence of 
alternative specializations as prey 
populations become more temporally 
variable.   

There will be decreased co-occurrence of 
alternative specializations when the 
rate of change is slow relative to the 
rate of learning  

4) Manipulate metabolic costs of 
foraging (e.g. increase travel 
time between patches)  

The degree of specialization will increase as 
metabolic costs increase 

5) Compare the frequency of 
specialization in closely related 
taxa having different offspring 
dependency patterns 

The degree of specialization will be higher in 
species having prolonged offspring 
dependency and known (or suspected) 
cultural transmission of foraging 
skills 

6) Inter- or intra-specific comparisons 
of species that do effectively 
limit their prey populations 
with other species (or 
populations) that do not 

There will be increased co-occurrence of 
alternative specializations in species 
with a greater potential for frequency 
dependence 

7) Intra-specific comparisons of 
foraging behavior among 
populations that utilize different 
suites of prey in different 
habitats 

The degree of specialization will be lower in 
habitats where there is less individual 
variation in foraging efficiency (lower 
value of ρ) or where acquisition of 
prey-specific foraging skills is rapid 
(high value of li) 
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Table 3.3 (continued) 

Suggested Experiment or Comparison Predictions 

8) Intra-specific comparisons of 
specialization prevalence 
associated with particular prey 
types 

The degree of specialization will be highest for 
those prey types requiring complex 
manipulation skills (i.e. slowest rate of 
learning or most J-shaped learning 
curve)  

Prey species not requiring complex skills (i.e. 
rapid rate of learning or r-shaped 
learning curves) will be ubiquitous in 
the diet  

9) Inter-population comparisons or 
multi-year studies of foraging 
behavior incorporating 
environmental differences or 
varying population densities 

The degree of specialization will be higher in 
locations or years when population 
density is high and individuals have 
fewer energy reserves  
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Figure 3.1 Graphical representation of the decision matrix, showing the expected behavior 
of a forager plotted as a function of its skill level for prey type 1 (horizontal axis) and skill 
level for prey type 2 (vertical axis) when all parameters are set to their baseline values.  The 
un-shaded area indicates combinations of skill levels where the predicted behavior is to 
generalize (never reject prey when encountered), the solid-shaded area indicates 
combinations of skill levels where the predicted behavior is to specialize on prey type 1 
(reject prey type 2 when encountered), and the stippled area indicates combinations of skill 
levels where the predicted behavior is to specialize on prey type 2 (reject prey type 1 when 
encountered).  The dashed lines indicate alternate model outcomes, in which the areas of 
specialization change as model parameters are varied (see Table 2): lines 1b and 1c show 
changes in the region of specialization on prey type 1, and lines 2b and 2c show changes in 
the region of specialization on prey type 2 (1a and 2a correspond to the baseline regions of 
specialization).  The decision rules of thumb used for the Individually Based Model 
(equations 37 and 38) produce a pattern identical to the one shown here. 
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Figure 3.2 The index of specialization (I) as a function of four model parameters: A) the 
magnitude of the learning effect, ρ (higher values of ρ result in a greater decrease in 
handling time with experience); B) the shape of the learning curve, γ (γ > 1 results in a J-
shaped learning curve, γ < 1 results in a r-shaped learning curve); C) the rate at which new 
skills can be learned, li; and D) the rate at which prey-specific skills are lost by foraging on 
alternative prey types, fi.  Note that smaller values of I indicate a greater tendency of 
individuals to specialize rather than generalize, while higher values (approaching 1) occur 
when individual diets converge on the average diet of population.  Error bars represent 95% 
confidence intervals. 
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Figure 3.3 The frequency of alternative specializations within a single population plotted as 
a function of the strength of cultural transmission, β, and the shape of the learning curve, γ.  
A) Square symbols show the difference between stochastic prey dynamics and frequency 
dependent prey dynamics when β = 0 and fi = 2.  Diamonds connected by lines summarize 
the interaction between the effects of frequency dependence, cultural transmission (β) and 
the rate of forgetting (fi).  B) The effect of varying γ when β = 0, and when β = 0.8.  Error 
bars represent 95% confidence intervals. 
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Figure 3.4 The selective effect of cultural transmission on decision rules of thumb when fi = 
1 (slow rate of skill loss for generalists) and when fi = 2 (fast rate of skill loss for 
generalists).  Three sets of results are shown: simulations with no cultural transmission (β = 
0), simulations where individual foragers transmitted their foraging skills to offspring (β = 
0.8) but used decision rules selected for under conditions of no cultural transmission (β = 0), 
and simulations where individual foragers transmitted their foraging skills to offspring (β = 
0.8) and used appropriately-selected decision rules.  Error bars indicate the 95% confidence 
bound around each point (all points shown are significantly different). 
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Figure 3.5  The sensitivity of simulation results to 8 of the model parameters: the strength of 
cultural transmission (β), the intensity of frequency dependence (IFD), the rate at which 
foraging skills are acquired by learning (li), the rate at which foraging skills are lost by 
forgetting (fi), the degree to which learning affects handling efficiency (ρ), the shape of the 
learning curve (γ), the magnitude of stochastic variation in prey population dynamics (ψ) and 
the degree of temporal autocorrelation in prey population dynamics (κ).  A) the relative 
contribution of each model parameter to variation in I, the index of specialization; B) the 
relative contribution of each model parameter to variation in the frequency of co-occurring 
alternative specializations (see text for explanation).  Error bars represent 95% confidence 
intervals. 
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Appendix A. Maximum Likelihood analysis of carcass distributions and population counts, 1992-2001: summary of 34 model forms 
having greatest support (∆i ≤ 5) 
 
Model Support Model Description       

AIC ai Sex 
Effect1 

Wean Rate Time 
Effect2 

Time Effect 
Interactions 

Number 
Spatial 
Groups 

Grouping 
Configuration3 

Location 
Effect 

Interactions 

Interaction 
Explanation 

472.63 0.127 Simple baseline categorical time-age 2 1122 none time effect 
increases 
with age  

474.04 0.063 Simple baseline continuous none 2 1122 none  
474.12 0.060 Simple lower none none 2 1122 none  
474.23 0.057 age-sex  baseline none none 2 1122 none  
474.30 0.055 Simple baseline none none 1 1111 none  
474.62 0.047 Simple baseline continuous time-sex 2 1122 none time effect 

greater for 
females  

474.64 0.047 Simple baseline none none 2 1122 none  
475.07 0.038 Simple baseline none none 2 1211 none  
475.10 0.037 Simple baseline continuous none 2 1211 none  
475.43 0.031 Simple baseline none none 2 1122 group-age juv./subadult 

survival 
higher in 
south 

475.43 0.031 Simple baseline categorical none 2 1211 none  
475.52 0.030 Simple baseline none none 3 1231 none  
475.76 0.027 Simple lower categorical none 2 1122 none  
475.77 0.026 age-sex  baseline none none 3 1231 none  
475.93 0.024 Simple lower continuous none 2 1122 none  
476.03 0.023 age-sex  baseline categorical none 2 1122 none  
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Appendix A. (continued)        
AIC ai Sex 

Effect1 
Wean Rate Time 

Effect2 
Time Effect 
Interactions 

Number 
Spatial 
Groups 

Grouping 
Configuration3 

Location 
Effect 

Interactions 

Interaction 
Explanation 

476.27 0.021 simple baseline categorical none 2 1122 none  
476.36 0.020 simple baseline continuous group-time 2 1122 group-time time effect 

not as strong 
in south 

476.37 0.020 age-sex  lower none none 2 1122 none  
476.42 0.019 age-sex  baseline continuous none 2 1122 none  
476.68 0.017 simple baseline continuous time-age 2 1122 none time effect 

increases 
with age  

476.86 0.015 age-sex  baseline none none 2 1211 none  
476.92 0.015 age-sex  baseline continuous group-time 2 1122 group-time time effect 

not as strong 
in south 

476.94 0.015 simple time intxn continuous none 2 1122 none weaning 
succes 
increases 
with time  

476.96 0.015 simple lower none none 3 1231 none  
476.97 0.015 simple baseline categorical time-age 2 1211 none time effect 

increases 
with age  

476.99 0.014 age-sex  lower continuous none 2 1122 none  
477.05 0.014 age-sex  baseline categorical none 2 1211 group-age juv./subadult 

survival high 
in south 

477.08 0.014 age-sex  baseline continuous none 2 1211 none  
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Appendix A. (continued)        
AIC ai Sex 

Effect1 
Wean Rate Time 

Effect2 
Time Effect 
Interactions 

Number 
Spatial 
Groups 

Grouping 
Configuration3 

Location 
Effect 

Interactions 

Interaction 
Explanation 

477.11 0.014 simple baseline categorical group-time 2 1122 group-time time effect 
not as strong 
in south 

477.14 0.013 simple baseline continuous time-sex 2 1211 none time effect 
greater for 
females  

477.27 0.013 simple lower continuous group-time 2 1122 group-time time effect 
not as strong 
in south 

477.38 0.012 age-sex  lower continuous group-time 2 1122 group-time time effect 
not as strong 
in south 

477.60 0.011 simple lower none none 2 1211 none  
 

1 Simple effect of sex indicates lower male survival relative to females for all ages; age-sex interaction indicates greater decrease in 
survival with age for males relative to females 
 
2 Time effect, when present, was always negative (decreased survival from 1992 to 2001).  For categorical time effects, location of 
temporal break was 1994-95 in all cases 
 

3 Grouping levels are shown for the 4 major geographic sub-divisions: 1) northern periphery, 2) north-center, 3) south-center and 4) 
southern periphery of range.  Thus a code of   "1122" indicates that geographical sub-divisions 1 and 2 were grouped together (i.e. had 
identical demographic rates) but were different from sub-divisions 3 and 4.
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Appendix B. Sea otter survival rates: Maximum Likelihood model-averaged estimates for 1992-2001 
1. Northern Periphery of Range

Juvenile (0-1 years) Subadult (2-3 years) Adult (4-10 years) Old Adult (11-20 years)
Year Mean SE L95 U95 Mean SE L95 U95 Mean SE L95 U95 Mean SE L95 U95

Females
1992 0.858 0.0316 0.784 0.910 0.869 0.0128 0.842 0.892 0.870 0.0171 0.833 0.900 0.556 0.1899 0.217 0.850
1993 0.857 0.0312 0.784 0.908 0.867 0.0124 0.841 0.890 0.869 0.0176 0.830 0.899 0.553 0.1910 0.214 0.849
1994 0.855 0.0308 0.784 0.906 0.866 0.0124 0.839 0.888 0.867 0.0185 0.826 0.899 0.550 0.1921 0.210 0.848
1995 0.849 0.0311 0.777 0.900 0.858 0.0132 0.830 0.882 0.855 0.0236 0.802 0.896 0.527 0.2025 0.185 0.845
1996 0.847 0.0308 0.776 0.898 0.856 0.0134 0.828 0.881 0.853 0.0245 0.799 0.895 0.524 0.2036 0.182 0.845
1997 0.845 0.0307 0.775 0.896 0.855 0.0140 0.825 0.880 0.851 0.0256 0.794 0.895 0.521 0.2047 0.179 0.844
1998 0.844 0.0306 0.774 0.895 0.853 0.0152 0.821 0.880 0.849 0.0268 0.789 0.895 0.518 0.2058 0.176 0.844
1999 0.842 0.0308 0.772 0.893 0.851 0.0166 0.816 0.881 0.847 0.0283 0.783 0.895 0.515 0.2070 0.173 0.843
2000 0.840 0.0313 0.769 0.892 0.849 0.0182 0.810 0.882 0.845 0.0299 0.777 0.895 0.512 0.2083 0.170 0.843
2001 0.838 0.0321 0.765 0.892 0.847 0.0199 0.804 0.882 0.843 0.0317 0.771 0.896 0.509 0.2095 0.167 0.843
Males
1992 0.809 0.0327 0.736 0.865 0.811 0.0204 0.768 0.848 0.784 0.0352 0.707 0.845 0.371 0.1673 0.127 0.706
1993 0.807 0.0318 0.737 0.861 0.809 0.0200 0.767 0.845 0.782 0.0349 0.706 0.842 0.368 0.1672 0.125 0.705
1994 0.805 0.0311 0.736 0.858 0.807 0.0201 0.765 0.843 0.779 0.0350 0.703 0.840 0.365 0.1673 0.123 0.703
1995 0.796 0.0287 0.734 0.847 0.797 0.0197 0.756 0.833 0.763 0.0413 0.673 0.834 0.345 0.1707 0.107 0.698
1996 0.794 0.0284 0.733 0.844 0.795 0.0203 0.752 0.832 0.760 0.0414 0.670 0.832 0.342 0.1707 0.105 0.697
1997 0.792 0.0285 0.730 0.842 0.792 0.0215 0.747 0.831 0.757 0.0420 0.666 0.830 0.339 0.1708 0.103 0.696
1998 0.790 0.0291 0.727 0.841 0.790 0.0231 0.741 0.832 0.754 0.0430 0.661 0.829 0.336 0.1709 0.102 0.695
1999 0.787 0.0300 0.723 0.840 0.787 0.0250 0.734 0.832 0.752 0.0445 0.655 0.828 0.334 0.1711 0.100 0.694
2000 0.785 0.0313 0.717 0.840 0.785 0.0271 0.727 0.833 0.749 0.0462 0.648 0.828 0.331 0.1713 0.098 0.693
2001 0.782 0.0328 0.711 0.840 0.782 0.0293 0.719 0.834 0.746 0.0483 0.640 0.828 0.328 0.1715 0.096 0.692  
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Appendix B. (continued) 

2. North-Center of Range
Juvenile (0-1 years) Subadult (2-3 years) Adult (4-10 years) Old Adult (11-20 years)

Year Mean SE L95 U95 Mean SE L95 U95 Mean SE L95 U95 Mean SE L95 U95
Females

1992 0.853 0.0330 0.776 0.907 0.864 0.0139 0.834 0.889 0.866 0.0171 0.829 0.896 0.550 0.1885 0.216 0.845
1993 0.852 0.0325 0.776 0.905 0.862 0.0133 0.834 0.887 0.864 0.0175 0.826 0.895 0.547 0.1896 0.212 0.844
1994 0.850 0.0321 0.776 0.903 0.861 0.0130 0.833 0.884 0.863 0.0183 0.823 0.895 0.544 0.1908 0.209 0.844
1995 0.843 0.0328 0.768 0.897 0.853 0.0144 0.822 0.879 0.851 0.0228 0.801 0.890 0.521 0.2006 0.184 0.840
1996 0.842 0.0323 0.768 0.895 0.851 0.0143 0.821 0.877 0.849 0.0235 0.797 0.890 0.518 0.2017 0.181 0.840
1997 0.840 0.0318 0.767 0.893 0.850 0.0146 0.819 0.876 0.847 0.0245 0.793 0.889 0.515 0.2029 0.178 0.839
1998 0.838 0.0315 0.767 0.891 0.848 0.0153 0.815 0.876 0.845 0.0257 0.788 0.889 0.512 0.2041 0.175 0.839
1999 0.837 0.0314 0.765 0.889 0.846 0.0165 0.811 0.876 0.843 0.0271 0.782 0.889 0.509 0.2054 0.172 0.839
2000 0.835 0.0315 0.764 0.888 0.844 0.0179 0.806 0.876 0.841 0.0288 0.776 0.890 0.506 0.2066 0.169 0.838
2001 0.833 0.0319 0.761 0.886 0.842 0.0196 0.800 0.877 0.839 0.0305 0.770 0.890 0.504 0.2079 0.166 0.838
Males
1992 0.802 0.0321 0.732 0.858 0.805 0.0199 0.763 0.841 0.778 0.0353 0.702 0.840 0.365 0.1631 0.127 0.696
1993 0.800 0.0309 0.733 0.854 0.803 0.0190 0.763 0.838 0.776 0.0348 0.700 0.837 0.362 0.1630 0.125 0.694
1994 0.798 0.0300 0.733 0.851 0.801 0.0188 0.761 0.835 0.773 0.0347 0.698 0.834 0.359 0.1631 0.123 0.692
1995 0.790 0.0277 0.730 0.839 0.791 0.0191 0.751 0.826 0.757 0.0404 0.669 0.827 0.339 0.1659 0.107 0.686
1996 0.788 0.0269 0.730 0.836 0.788 0.0195 0.747 0.824 0.754 0.0403 0.667 0.824 0.336 0.1658 0.105 0.685
1997 0.785 0.0266 0.729 0.833 0.786 0.0205 0.743 0.823 0.751 0.0406 0.663 0.822 0.333 0.1659 0.103 0.683
1998 0.783 0.0268 0.726 0.831 0.783 0.0220 0.737 0.823 0.748 0.0415 0.659 0.821 0.330 0.1660 0.102 0.682
1999 0.781 0.0275 0.722 0.830 0.781 0.0238 0.731 0.824 0.745 0.0428 0.653 0.820 0.327 0.1661 0.100 0.681
2000 0.778 0.0286 0.717 0.829 0.778 0.0258 0.724 0.825 0.742 0.0445 0.646 0.820 0.325 0.1663 0.098 0.680
2001 0.776 0.0301 0.711 0.829 0.776 0.0280 0.716 0.826 0.739 0.0465 0.639 0.820 0.322 0.1666 0.096 0.680  



 172

Appendix B. (continued) 

3. South-Center of Range
Juvenile (0-1 years) Subadult (2-3 years) Adult (4-10 years) Old Adult (11-20 years)

Year Mean SE L95 U95 Mean SE L95 U95 Mean SE L95 U95 Mean SE L95 U95
Females

1992 0.867 0.0281 0.802 0.913 0.876 0.0131 0.848 0.899 0.874 0.0179 0.835 0.905 0.554 0.1903 0.215 0.849
1993 0.866 0.0277 0.802 0.911 0.874 0.0127 0.847 0.897 0.873 0.0182 0.832 0.904 0.551 0.1911 0.212 0.848
1994 0.864 0.0273 0.801 0.909 0.873 0.0126 0.846 0.895 0.871 0.0189 0.829 0.904 0.547 0.1921 0.209 0.847
1995 0.858 0.0277 0.794 0.904 0.865 0.0131 0.837 0.889 0.859 0.0229 0.808 0.899 0.524 0.2021 0.183 0.843
1996 0.856 0.0273 0.794 0.902 0.863 0.0131 0.836 0.887 0.858 0.0233 0.805 0.898 0.521 0.2030 0.181 0.843
1997 0.854 0.0271 0.793 0.900 0.862 0.0134 0.833 0.886 0.856 0.0241 0.802 0.897 0.518 0.2039 0.178 0.842
1998 0.852 0.0270 0.791 0.898 0.860 0.0141 0.830 0.885 0.854 0.0250 0.798 0.896 0.514 0.2048 0.175 0.841
1999 0.851 0.0272 0.789 0.896 0.858 0.0151 0.826 0.885 0.852 0.0262 0.793 0.896 0.511 0.2058 0.172 0.840
2000 0.849 0.0275 0.787 0.895 0.856 0.0164 0.821 0.885 0.850 0.0274 0.788 0.896 0.508 0.2068 0.169 0.840
2001 0.847 0.0282 0.783 0.894 0.854 0.0179 0.815 0.886 0.847 0.0289 0.782 0.896 0.505 0.2079 0.167 0.839
Males
1992 0.820 0.0278 0.759 0.868 0.821 0.0196 0.779 0.856 0.791 0.0347 0.715 0.851 0.370 0.1618 0.131 0.696
1993 0.818 0.0267 0.760 0.865 0.819 0.0190 0.779 0.853 0.788 0.0341 0.714 0.847 0.367 0.1614 0.129 0.693
1994 0.816 0.0259 0.760 0.861 0.817 0.0191 0.776 0.851 0.786 0.0338 0.712 0.845 0.363 0.1613 0.127 0.691
1995 0.808 0.0231 0.758 0.849 0.807 0.0186 0.768 0.840 0.769 0.0388 0.685 0.836 0.342 0.1640 0.111 0.684
1996 0.805 0.0226 0.757 0.846 0.804 0.0189 0.764 0.839 0.766 0.0385 0.683 0.833 0.339 0.1637 0.109 0.682
1997 0.803 0.0225 0.755 0.844 0.802 0.0198 0.760 0.838 0.764 0.0386 0.680 0.831 0.336 0.1635 0.107 0.680
1998 0.801 0.0229 0.752 0.842 0.799 0.0211 0.755 0.837 0.761 0.0392 0.676 0.829 0.333 0.1635 0.105 0.679
1999 0.798 0.0237 0.748 0.841 0.797 0.0226 0.749 0.837 0.758 0.0402 0.671 0.828 0.330 0.1634 0.104 0.677
2000 0.796 0.0248 0.743 0.840 0.794 0.0244 0.742 0.838 0.755 0.0416 0.665 0.827 0.327 0.1635 0.102 0.676
2001 0.793 0.0262 0.737 0.840 0.791 0.0265 0.735 0.839 0.751 0.0433 0.657 0.827 0.324 0.1635 0.100 0.675



 173

Appendix B. (continued) 

4. Southern Periphery of Range
Juvenile (0-1 years) Subadult (2-3 years) Adult (4-10 years) Old Adult (11-20 years)

Year Mean SE L95 U95 Mean SE L95 U95 Mean SE L95 U95 Mean SE L95 U95
Females

1992 0.869 0.0267 0.807 0.913 0.878 0.0118 0.852 0.899 0.876 0.0178 0.837 0.907 0.557 0.1924 0.214 0.853
1993 0.867 0.0263 0.807 0.911 0.876 0.0116 0.851 0.897 0.874 0.0183 0.834 0.906 0.554 0.1933 0.211 0.852
1994 0.866 0.0260 0.806 0.909 0.874 0.0116 0.850 0.895 0.872 0.0191 0.830 0.906 0.550 0.1943 0.208 0.851
1995 0.859 0.0266 0.799 0.904 0.867 0.0126 0.840 0.890 0.861 0.0238 0.807 0.901 0.527 0.2044 0.182 0.847
1996 0.858 0.0263 0.798 0.902 0.865 0.0127 0.838 0.888 0.859 0.0244 0.804 0.901 0.524 0.2053 0.180 0.847
1997 0.856 0.0261 0.797 0.900 0.863 0.0133 0.835 0.887 0.857 0.0252 0.800 0.900 0.520 0.2062 0.177 0.846
1998 0.854 0.0262 0.795 0.898 0.862 0.0142 0.831 0.887 0.855 0.0263 0.796 0.900 0.517 0.2072 0.174 0.845
1999 0.852 0.0264 0.793 0.897 0.860 0.0155 0.827 0.887 0.853 0.0274 0.791 0.899 0.514 0.2082 0.171 0.844
2000 0.850 0.0270 0.789 0.896 0.858 0.0169 0.821 0.888 0.851 0.0288 0.786 0.899 0.511 0.2092 0.168 0.844
2001 0.848 0.0278 0.786 0.895 0.856 0.0186 0.815 0.889 0.849 0.0302 0.780 0.899 0.508 0.2103 0.166 0.843
Males
1992 0.822 0.0275 0.762 0.870 0.823 0.0186 0.784 0.857 0.793 0.0338 0.719 0.852 0.373 0.1635 0.131 0.701
1993 0.820 0.0265 0.762 0.867 0.821 0.0184 0.782 0.854 0.791 0.0332 0.718 0.849 0.370 0.1631 0.129 0.698
1994 0.818 0.0258 0.762 0.863 0.819 0.0188 0.779 0.853 0.788 0.0332 0.716 0.846 0.366 0.1630 0.127 0.696
1995 0.810 0.0234 0.760 0.852 0.809 0.0189 0.769 0.843 0.772 0.0383 0.688 0.838 0.345 0.1657 0.111 0.689
1996 0.808 0.0231 0.758 0.849 0.806 0.0195 0.765 0.842 0.769 0.0381 0.686 0.835 0.342 0.1655 0.110 0.687
1997 0.805 0.0232 0.756 0.847 0.804 0.0206 0.761 0.841 0.766 0.0384 0.683 0.833 0.339 0.1654 0.108 0.686
1998 0.803 0.0237 0.752 0.845 0.801 0.0219 0.755 0.841 0.763 0.0391 0.678 0.831 0.336 0.1653 0.106 0.684
1999 0.800 0.0247 0.748 0.844 0.799 0.0235 0.749 0.841 0.760 0.0402 0.673 0.830 0.333 0.1654 0.104 0.682
2000 0.798 0.0259 0.743 0.844 0.796 0.0253 0.742 0.841 0.757 0.0418 0.666 0.829 0.330 0.1654 0.102 0.681
2001 0.795 0.0273 0.737 0.844 0.794 0.0274 0.735 0.842 0.754 0.0436 0.659 0.829 0.327 0.1655 0.100 0.680  
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Appendix C. Maximum Likelihood analysis of mark-resight survival data, 2001-2003: summary of 10 model forms having greatest 
support (∆i ≤ 10) 
 
Model Support  Model Description    

AIC ai Sex Effect Spatial Variation 1 Yearly Variation Seasonal Variation Season-Location 
Interaction 

254.3 0.541 No (1 = 2) < 3 no summer < winter & fall 
in areas 1 & 2 

summer > winter & fall 
in area 3 

256.6 0.172 No (1 = 2) < 3 no summer < winter & fall 
in areas 1 & 2 

no seasonal variation in 
area 3 

257.7 0.097 No no no no no 
259.3 0.043 No (1 = 2) < 3 no no no 
259.5 0.040 males > females no no no no 
259.9 0.032 No no no summer < winter & fall no 
260.1 0.029 No no 2003 < 2001 & 2002 no no 
260.9 0.020 No 2 < 1 < 3 no no no 
261.3 0.016 males > females (1 = 2) < 3 no no no 
263.3 0.006 No (1 = 2) < 3 2003 < 2001 & 2002 no no 

 

1 Spatial variation effect, when present, allows for different survival estimates for three study areas: 1 = Monterey peninsula, 2 = San  
Simeon, 3 = Pt. Conception 
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Appendix D: Prey biomass and energy content conversion parameters used for analyses of 
diet content (by weight) and rate of energy acquisition.  Equations to convert prey diameter 
(mm) to wet edible biomass (g) were taken from the published literature for 7 species, and 
generalized cross-species function used to convert remaining species (calculated as the 
average, best-fit relationship for the 7 known species across their appropriate size ranges: see 
graph).  Note: Referenced literature is cited as numbers in tables, and full citations are 
provided below. 
 
Species used to derive generalized, cross-species relationship
Prey species Equation Parameter a Parameter b Reference

washington clam a*size^b 0.0001 2.5550 2
purple urchin exp(a+b*size) -1.6077 0.0907 1
red abalone exp(a+b*size) 2.3070 0.0224 1
turban snail exp(a+b*size) -3.0770 0.1419 1
ochre star exp(a+b*size) 0.2500 0.0436 1
rock crab exp(a+b*size) 1.9143 0.0340 1
kelp crab exp(a+b*size) 1.6327 0.0142 1
Generalized relationship: a*size^b 0.0006 2.7034 (see graph)  
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Appendix D. (continued) Mean recorded size (in cm) for each prey type and associated estimated wet edible biomass.   Estimated energy 
content is also shown for each size class, calculated using published size-biomass conversion equations and energy density values. 

   Energy Content (kJ per item)

Prey Type References Mean Size (cm)
Mean estimated 
wet biomass (g)

Size 1     
(1-5 cm)

Size 2     (6-
10 cm)

Size 3     (11-
15 cm)

Size 4    
(>15 cm)

kelp crab 1,4 3.9 10 19.9 40.4 65.4  - 
turban snail 4 2.5 3 25.3  -  -  - 
mussel 3,4,7 3.4 9 2.5 37.4  -  - 
purple urchin 1 4 8 5.6 104.6  -  - 
clam, unidentified species 8 4.3 16 2 8.6 99.1 394.0  - 
cancer crab 1,4 9.3 160 47.8 261.3 1428.1 2183.9
crab, unidentified species 8 4.1 15 2 33.8 150.8 1307.6 2183.9
fat innkeeper worm 6 6.3 22 25.5 51.4 51.4  - 
Small kelp fuana N/A 10 1

sea star 8 6.6 23 5.5 35.8 42.6  - 
sand crab 2.7 5 2 10.0  -  -  - 
sand dollar 3.5 9 2 5.0  -  -  - 
abalone 1 13.9 226 8.4 229.9 704.2 3637.8
octopus 5 7.6 67 13.5 208.6 870.8 3291.8
worm, unknown species 8 5.9 10 1 12.7 25.7 25.7  - 
chiton 4 4.5 19 2 6.7 100.5 279.1  - 
limpet 8 2.4 4 2 6.7 49.8  -  - 
scallop 1,3,6 8 73 8.0 85.1  -  - 
cockle 2,8 10 162 2 8.1 97.2 247.7  - 
gaper clam 1,3,6 7 59 9.1 107.3 382.8  - 
sea cucumber 8 3.8 12 2 7.5 20.0 25.0  - 
red urchin 1 4.3 12 14.1 142.8 571.5  - 
Squid 1 4.3 16 2 6.8 104.3 435.4 1645.9
isopod 8 2.4 4 2 10.0  -  -  - 

 (15)
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Appendix D. (continued) 

Footnotes: 

1 Not derived from equations because size was impossible to measure. Value represents 
approximation based on average handling times.  
 

2 No published size-biomass conversion calculations were found, and thus the generalized, 
cross-species relationship (see above) was used for biomass estimations. 
 

Literature cited in tables (used for size-biomass and biomass-energy conversion parameters)   

1. Costa, D. P. 1978. The ecological energetics, water, and electrolyte balance of the 
California sea otter (Enhydra lutris). Ph.D. dissertation. University of California, 
Santa Cruz, Santa Cruz, CA. 

2. Dean, T. A., J. L. Bodkin, A. K. Fukuyama, S. C. Jewett, D. H. Monson, C. E. 
O'Clair, and G. R. VanBlaricom. 2002. Food limitation and the recovery of sea 
otters following the 'Exxon Valdez' oil spill. Marine Ecology-Progress Series 
241:255-270. 

3. Ebert, E. E. 1968. A food habits study of the southern sea otter, Enhydra lutris 
nereis. California Fish and Game 54:33-42. 

4. Faurot, E. R., J. A. Ames, and D. P. Costa. 1986. Analysis of sea otter, Enhydra 
lutris, scats collected from a California haulout site. Mar. Mammal Sci. 2:223-227. 

5. Hernández-López, J. L., J. J. Castro-Hernández, and H.-G. Vicente. 2001. Age 
determined from the daily deposition of concentric rings on common octopus 
(Octopus vulgaris) beaks. Fisheries Bulletin 99:679–684. 

6. Jolly, J. M. 1997. Foraging ecology of the sea otter, Enhydra lutris, in a soft-
sediment community. Masters dissertation. University of California, Santa Cruz, 
Santa Cruz, CA. 

7. Mathews, C. R. 1996. Diet Profitability for the California Sea Otter, Enhydra lutris. 
Masters dissertation. University of California, Santa Cruz, Santa Cruz, CA. 

8. Wacasey, J. W., and E. G. Atkinson. 1987. Energy values of marine benthic 
invertebrates from the Canadian Arctic. Marine Ecology Progress Series 39:243-
250. 
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Appendix E: Summary of Discriminant Analysis Results 

Standardized Canonimal Coefficients
Prey Type F-to-Remove Factor 1 Factor 2 Total (absolute)
snail 42.49 0.191 0.947 1.138
cancer crab 10.62 -0.822 0.174 0.996
clam 9.34 0.724 -0.446 1.17
worm 4.07 0.337 -0.398 0.735
abalone 2.58 -0.432 0.139 0.571
mussel 2.28 0.248 -0.355 0.603
other (sand) 2.07 0.079 -0.486 0.565
sea star 1.6 -0.478 0.074 0.552
crab (un-id) 1.53 -0.351 0.034 0.385
kelp crab 1.43 0.183 -0.291 0.474
urchin 1.42 0.127 -0.294 0.421
other (rock) 0.43 0.006 -0.164 0.17
cephalapod 0.09 -0.054 -0.053 0.107

Group Means Cluster 1 Cluster 2 Cluster 3
abalone 5.125 1.155 0.259
clam 1.453 4.502 0.710
cancer crab 22.376 7.393 0.975
cephalapod 0.813 0.456 0.048
crab (un-id) 0.977 0.572 0.246
kelp crab 1.636 0.939 0.669
mussel 0.670 2.105 0.175
other (sand) 0.004 0.881 0.000
other (rock) 0.259 0.569 0.008
snail 0.361 0.170 9.353
sea star 0.826 0.129 0.401
urchin 1.499 1.664 0.531
worm 0.238 2.595 0.085  
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Appendix E. (continued) 

Diagnostic Statistics
         Wilks' lambda=       0.050
              Approx.F=      12.031  df=  26,       90  p-tail=  0.0000
 
        Pillai's trace=       1.545
              Approx.F=      12.015  df=  26,       92  p-tail=  0.0000
 
        Lawley-Hotelling trace=       7.114
              Approx.F=      12.039  df=  26,       88  p-tail=  0.0000  

 

Cluster 1 Cluster 2 Cluster 3
Group Frequencies: 20 34 6

Classification matrix (cases in row categories classified into columns)
Cluster 1 Cluster 2 Cluster 3 %correct

1 1 33 0 97
2 19 0 1 95
3 0 0 6 100

   Total: 20 33 7 97 
Jackknifed classification matrix

Cluster 1 Cluster 2 Cluster 3 %correct
1 2 32 0 94
2 19 0 1 95
3 0 1 5 83

   Total 21 33 6 93
 
Factor Eigenvalues: 4.414 2.699

Canonical correlations: 0.903 0.854

Cumulative proportion of
        total dispersion: 0.621 1  
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Appendix F: Summary of Principal Component Analysis Results 

Latent Roots (Eigenvalues): 

    1              2              3              4              5      6              7  
 2.848       1.843       1.426       0.420       0.261       0.125      0.077 
 
 
 
Percent of Total Variance Explained  
by First 3 Components: 
  
    1              2              3 
40.690     26.325     20.365 

Component loadings: 1 2 3 
   Handling time/item -0.939 -0.051 -0.082 
   Variance in ST     -0.892 0.303 -0.112 
   Mean ST            -0.671 0.660 0.244 
   Dive success rate   0.620 0.406 0.531 
   Number items/dive   0.453 0.803 0.026 
   SDR                  0.080 0.709 -0.540 
   Dive duration       -0.353 0.018 0.879 
  
 
Coefficients for Standardized Scores: 1 2 3 
   Handling time/item  -0.330 -0.027 -0.057 
   Variance in ST       -0.313 0.165 -0.078 
   Mean ST             -0.236 0.358 0.171 
   Dive success rate    0.218 0.220 0.372 
   Number items/dive    0.159 0.436 0.018 
   SDR                  0.028 0.385 -0.379 
   Dive duration         -0.124 0.010 0.617 
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